6,659 research outputs found

    Modified newtonian dynamics and non-relativistic ChSAS gravity

    Full text link
    In the context of the non-relativistic theories, a generalization of the Chern--Weil-theorem allows us to show that extended Chern--Simons actions for gravity in d=4 invariant under some specific non-relativistic groups lead to modified Poisson equations. In some particular cases, these modified equations have the form of the so-called MOND approach to gravity. The modifications could be understood as due to the effects of dark matter. This result could leads us to think that dark matter can be interpreted as a non-relativistic limit of dark energy

    Generalized Galilean Algebras and Newtonian Gravity

    Get PDF
    The non-relativistic versions of the generalized Poincar\'{e} algebras and generalized AdSAdS-Lorentz algebras are obtained. This non-relativistic algebras are called, generalized Galilean algebras type I and type II and denoted by GBn\mathcal{G}\mathfrak{B}_{n} and GLn\mathcal{G}\mathfrak{L}_{_{n}} respectively. Using a generalized In\"{o}n\"{u}--Wigner contraction procedure we find that the generalized Galilean algebras type I can be obtained from the generalized Galilean algebras type II. The SS-expansion procedure allows us to find the GB5\mathcal{G}\mathfrak{B}_{_{5}} algebra from the Newton--Hooke algebra with central extension. The procedure developed in Ref. \cite{newton} allow us to show that the non-relativistic limit of the five dimensional Einstein--Chern--Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.Comment: 16 pages, no figures in 755 (2016) 433-43

    Robust approach to f(R) gravity

    Full text link
    We consider metric f(R) theories of gravity without mapping them to their scalar-tensor counterpart, but using the Ricci scalar itself as an "extra" degree of freedom. This approach avoids then the introduction of a scalar-field potential that might be ill defined (not single valued). In order to explicitly show the usefulness of this method, we focus on static and spherically symmetric spacetimes and deal with the recent controversy about the existence of extended relativistic objects in certain class of f(R) models.Comment: 5 pages; 2 figures (4 panels); minor corrections to match the published version; panel adde
    • …
    corecore