2,820 research outputs found

    Entanglement and quantum phase transitions

    Full text link
    We examine several well known quantum spin models and categorize behavior of pairwise entanglement at quantum phase transitions. A unified picture on the connection between the entanglement and quantum phase transition is given.Comment: 4 pages, 3 figure

    Charged and spin-excitation gaps in half-filled strongly correlated electron systems: A rigorous result

    Full text link
    By exploiting the particle-hole symmetries of the Hubbard model, the periodic Anderson model and the Kondo lattice model at half-filling and applying a generalized version of Lieb's spin-reflection positivity method, we show that the charged gaps of these models are always larger than their spin excitation gaps. This theorem confirms the previous results derived by either the variational approach or the density renormalization group approach.Comment: 20 pages, no figur

    Phase Diagram of the 1D Anderson Lattice

    Full text link
    We map out the phase diagram of the one--dimensional Anderson lattice by studying the ground state magnetization as a function of band--filling using the density matrix renormalization group technique. For strong coupling, we find that the quarter--filled system has an S=0 ground state with strong antiferromagnetic correlations. As additional electrons are put in, we find first a ferromagnetic phase, as reported by M\"{o}ller and W\"{o}lfle, and then a phase in which the ground state has total spin S=0S=0. Within this S=0S=0 phase, we find RKKY oscillations in the spin--spin correlation functions.Comment: REVTEX manuscript with 5 Postcript figures included in uu file. Submitted to Phys. Rev.

    Transition from band insulator to Mott insulator in one dimension: Critical behavior and phase diagram

    Full text link
    We report a systematic study of the transition from a band insulator (BI) to a Mott insulator (MI) in a one-dimensional Hubbard model at half-filling with an on-site Coulomb interaction U and an alternating periodic site potential V. We employ both the zero-temperature density matrix renormalization group (DMRG) method to determine the gap and critical behavior of the system and the finite-temperature transfer matrix renormalization group method to evaluate the thermodynamic properties. We find two critical points at U = UcU_c and U = UsU_s that separate the BI and MI phases for a given V. A charge-neutral spin-singlet exciton band develops in the BI phase (U<UcU_c) and drops below the band gap when U exceeds a special point Ue. The exciton gap closes at the first critical point UcU_c while the charge and spin gaps persist and coincide between UcU_c<U<UsU_s where the system is dimerized. Both the charge and spin gaps collapse at U = UsU_s when the transition to the MI phase occurs. In the MI phase (U>UsU_s) the charge gap increases almost linearly with U while the spin gap remains zero. These findings clarify earlier published results on the same model, and offer insights into several important issues regarding an appropriate scaling analysis of DMRG data and a full physical picture of the delicate nature of the phase transitions driven by electron correlation. The present work provides a comprehensive understanding for the critical behavior and phase diagram for the transition from BI to MI in one-dimensional correlated electron systems with a periodic alternating site potential.Comment: long version, 10 figure

    AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe_(2-x)TM_(x)As2 (TM = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity

    Full text link
    The electronic structure and physical properties of the pnictide compound families REREOFeAs (RERE = La, Ce, Pr, Nd, Sm), AAFe2_{2}As2_{2} (AA = Ca, Sr, Ba, Eu), LiFeAs and FeSe are quite similar. Here, we focus on the members of the AAFe2_{2}As2_{2} family whose sample composition, quality and single crystal growth are better controllable compared to the other systems. Using first principles band structure calculations we focus on understanding the relationship between the crystal structure, charge doping and magnetism in AAFe2_{2}As2_{2} systems. We will elaborate on the tetragonal to orthorhombic structural distortion along with the associated magnetic order and anisotropy, influence of doping on the AA site as well as on the Fe site, and the changes in the electronic structure as a function of pressure. Experimentally, we investigate the substitution of Fe in SrFe2xTMx_{2-x}TM_{x}As2_{2} by other 3dd transition metals, TMTM = Mn, Co, Ni. In contrast to a partial substitution of Fe by Co or Ni (electron doping) a corresponding Mn partial substitution does not lead to the supression of the antiferromagnetic order or the appearance of superconductivity. Most calculated properties agree well with the measured properties, but several of them are sensitive to the As zz position. For a microscopic understanding of the electronic structure of this new family of superconductors this structural feature related to the Fe-As interplay is crucial, but its correct ab initio treatment still remains an open question.Comment: 27 pages, single colum

    Partial wave analysis of J/psi to p pbar pi0

    Full text link
    Using a sample of 58 million J/ψJ/\psi events collected with the BESII detector at the BEPC, more than 100,000 J/ψppˉπ0J/\psi \to p\bar p \pi^0 events are selected, and a detailed partial wave analysis is performed. The branching fraction is determined to be Br(J/ψppˉπ0)=(1.33±0.02±0.11)×103Br(J/\psi \to p \bar p \pi^0)=(1.33 \pm 0.02 \pm 0.11) \times 10^{-3}. A long-sought `missing' NN^*, first observed in J/ψpnˉπJ/\psi \to p \bar n \pi^-, is observed in this decay too, with mass and width of 20404+3±252040_{-4}^{+3}\pm 25 MeV/c2^2 and 2308+8±52230_{-8}^{+8}\pm 52 MeV/c2^2, respectively. Its spin-parity favors 3/2+{3/2}^+. The masses, widths, and spin-parities of other NN^* states are obtained as well.Comment: Add one author nam

    Partial Wave Analysis of χc0π+πK+K\chi_{c0}\to\pi^+\pi^-K^+K^-

    Full text link
    A partial wave analysis of χc0π+πK+K\chi_{c0}\to\pi^+\pi^-K^+K^- in ψ(2S)γχc0\psi(2S)\to\gamma\chi_{c0} decay is presented using a sample of 14 million ψ(2S)\psi(2S) events accumulated by the BES II detector. The data are fitted to the sum of relativistic covariant tensor amplitudes for intermediate resonant decay modes. From the fit, significant contributions to χc0\chi_{c0} decays from the channels f0(980)f0(980)f_0(980)f_0(980), f0(980)f0(2200)f_0(980)f_0(2200), f0(1370)f0(1710)f_0(1370)f_0(1710), K(892)0Kˉ(892)0K^*(892)^0\bar K^*(892)^0, K0(1430)Kˉ0(1430)K^*_0(1430)\bar K^*_0(1430), K0(1430)Kˉ2(1430)+c.c.K^*_0(1430)\bar K^*_2(1430) + c.c., and K1(1270)KK_1(1270)K are found. Flavor-SU(3)-violating K1(1270)K1(1400)K_1(1270)-K_1(1400) asymmetry is observed. Values obtained for the masses and widths of the resonances f0(1710)f_0(1710), f0(2200)f_0(2200), f0(1370)f_0(1370), and K0(1430)K^*_0(1430) are presented.Comment: 16 pages, 9 figures, and 4 table

    Measurement of the chi_{c2} Polarization in psi(2S) to gamma chi_{c2}

    Full text link
    The polarization of the chi_{c2} produced in psi(2S) decays into gamma chi_{c2} is measured using a sample of 14*10^6 psi(2S) events collected by BESII at the BEPC. A fit to the chi_{c2} production and decay angular distributions in psi(2S) to gamma chi_{c2}, chi_{c2} to pi pi and KK yields values x=A_1/A_0=2.08+/-0.44 and y=A_2/A_0=3.03 +/-0.66, with a correlation rho=0.92 between them, where A_{0,1,2} are the chi_{c2} helicity amplitudes. The measurement agrees with a pure E1 transition, and M2 and E3 contributions do not differ significantly from zero.Comment: 6 pages, 4 figures, 1 tabl

    Measurement of the cross section for e^+e^- -> ppbar at center-of-mass energies from 2.0 to 3.07 GeV

    Full text link
    Cross sections for e^+e^- -> ppbar have been measured at 10 center-of-mass energies from 2.0 to 3.07 GeV by the BESII experiment at the BEPC, and proton electromagnetic form factors in the time-like region have been determined.Comment: 6 pages, 3 figure

    Observation of Y(2175) in J/ψηϕf0(980)J/\psi\to \eta\phi f_0(980)

    Full text link
    The decays of J/ψηϕf0(980)(ηγγ,ϕK+K,f0(980)π+π)J/\psi\to \eta\phi f_0(980) (\eta\to \gamma\gamma, \phi \to K^+K^-, f_0(980)\to\pi^+\pi^-) are analyzed using a sample of 5.8×1075.8 \times 10^{7} J/ψJ/\psi events collected with the BESII detector at the Beijing Electron-Positron Collider (BEPC). A structure at around 2.182.18 GeV/c2c^2 with about 5σ5\sigma significance is observed in the ϕf0(980)\phi f_0(980) invariant mass spectrum. A fit with a Breit-Wigner function gives the peak mass and width of m=2.186±0.010(stat)±0.006(syst)m=2.186\pm 0.010 (stat)\pm 0.006 (syst) GeV/c2c^2 and Γ=0.065±0.023(stat)±0.017(syst)\Gamma=0.065\pm 0.023 (stat)\pm 0.017 (syst) GeV/c2c^2, respectively, that are consistent with those of Y(2175), observed by the BABAR collaboration in the initial-state radiation (ISR) process e+eγISRϕf0(980)e^+e^-\to\gamma_{ISR}\phi f_0(980). The production branching ratio is determined to be Br(J/ψηY(2175))Br(Y(2175)ϕf0(980))Br(f0(980)π+π)=(3.23±0.75(stat)±0.73(syst))×104Br(J/\psi\to\eta Y(2175))\cdot Br(Y(2175)\to\phi f_0(980))\cdot Br(f_0(980)\to\pi^+\pi^-)=(3.23\pm 0.75 (stat)\pm0.73 (syst))\times 10^{-4}, assuming that the Y(2175) is a 11^{--} state.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Let
    corecore