1,987 research outputs found

    Shuttle/spacelab MMAP/electromagnetic environment experiment phase B definition study

    Get PDF
    Progress made during the first five months of the Phase B definition study for the MMAP/Electromagnetic Environment Experiment (EEE) was described. An antenna/receiver assembly has been defined and sized for stowing in a three pallet bay area in the shuttle. Six scanning modes for the assembly are analyzed and footprints for various antenna sizes are plotted. Mission profiles have been outlined for a 400 km height, 57 deg inclination angle, circular orbit. Viewing time over 7 geographical areas are listed. Shuttle interfaces have been studied to determine what configuration the antenna assembly must have to be shared with other experiments of the Microwave Multi-Applications Payload (MMAP) and to be stowed in the shuttle bay. Other results reported include a frequency plan, a proposed antenna subsystem design, a proposed receiver design, preliminary outlines of the experiment controls and an analysis of on-board and ground data processing schemes

    First principles simulations of 2D Cu superlattices on the MgO(001) surface

    Get PDF
    First principles slab simulations of copper 2D superlattices of different densities on the perfect MgO(0 0 1) surface are performed using the DFT method as implemented into the CRYSTAL98 computer code. In order to clarify the nature of interfacial bonding, we consider regular 1/4, 1/2 and I monolayer (ML) coverages and compare results of our calculations with various experimental and theoretical data. Our general conclusion is that the physical adhesion associated with a Cu polarization and charge redistribution gives the predominant contribution to the bonding of the regular Cu 2D layer on the MgO(0 0 1) surface. (C) 2003 Elsevier B.V. All rights reserved

    The kinetic MC modelling of reversible pattern formation in initial stages of thin metallic film growth on crystalline substrates

    Get PDF
    The results of kinetic MC simulations of the reversible pattern formation during the adsorption of mobile metal atoms on crystalline substrates are discussed. Pattern formation, simulated for submonolayer metal coverage, is characterized in terms of the joint correlation functions for a spatial distribution of adsorbed atoms. A wide range of situations, from the almost irreversible to strongly reversible regimes, is simulated. We demonstrate that the patterns obtained are defined by a key dimensionless parameter: the ratio of the mutual attraction energy between atoms to the substrate temperature. Our ab initio calculations for the nearest Ag-Ag adsorbate atom interaction on an MgO substrate give an attraction energy as large as 1.6 eV, close to that in a free molecule. This is in contrast to the small Ag adhesion and migration energies (0.23 and 0.05 eV, respectively) on a defect-free MgO substrate. (C) 2003 Elsevier Science Ltd. All rights reserved

    An Analytical Construction of the SRB Measures for Baker-type Maps

    Get PDF
    For a class of dynamical systems, called the axiom-A systems, Sinai, Ruelle and Bowen showed the existence of an invariant measure (SRB measure) weakly attracting the temporal average of any initial distribution that is absolutely continuous with respect to the Lebesgue measure. Recently, the SRB measures were found to be related to the nonequilibrium stationary state distribution functions for thermostated or open systems. Inspite of the importance of these SRB measures, it is difficult to handle them analytically because they are often singular functions. In this article, for three kinds of Baker-type maps, the SRB measures are analytically constructed with the aid of a functional equation, which was proposed by de Rham in order to deal with a class of singular functions. We first briefly review the properties of singular functions including those of de Rham. Then, the Baker-type maps are described, one of which is non-conservative but time reversible, the second has a Cantor-like invariant set, and the third is a model of a simple chemical reaction RIPR \leftrightarrow I \leftrightarrow P. For the second example, the cases with and without escape are considered. For the last example, we consider the reaction processes in a closed system and in an open system under a flux boundary condition. In all cases, we show that the evolution equation of the distribution functions partially integrated over the unstable direction is very similar to de Rham's functional equation and, employing this analogy, we explicitly construct the SRB measures.Comment: 53 pages, 10 figures, to appear in CHAO

    Electrocardiogram derived respiration during sleep

    Full text link
    The aim of this study was quantify the ECG Derived Respiration (EDR) in order to extend the capabilities of ECG-based sleep analysis. We examined our results in normal subjects and in patients with Obstructive Sleep Apnea Syndrome (OSAS) or Central Sleep Apnea. Lead 2 ECG and three measures of respiration (thorax and abdominal effort, and oronasal flow signal) were recorded during sleep studies of 12 normal and 12 OSAS patients. Three parameters, the R-wave amplitude (RWA), R-wave duration (RWD), and QRS area, were extracted from the ECG signal, resulting in time series that displayed a behavior similar to that of the respiration signals. EDR frequency was correlated with directly measured respiratory frequency, and averaged over all subjects. The peak-to-peak value of the EDR signals during the apnea event was compared to the average peak-to-peak of the sleep stage, containing the apnea. 1

    Evolution of collision numbers for a chaotic gas dynamics

    Full text link
    We put forward a conjecture of recurrence for a gas of hard spheres that collide elastically in a finite volume. The dynamics consists of a sequence of instantaneous binary collisions. We study how the numbers of collisions of different pairs of particles grow as functions of time. We observe that these numbers can be represented as a time-integral of a function on the phase space. Assuming the results of the ergodic theory apply, we describe the evolution of the numbers by an effective Langevin dynamics. We use the facts that hold for these dynamics with probability one, in order to establish properties of a single trajectory of the system. We find that for any triplet of particles there will be an infinite sequence of moments of time, when the numbers of collisions of all three different pairs of the triplet will be equal. Moreover, any value of difference of collision numbers of pairs in the triplet will repeat indefinitely. On the other hand, for larger number of pairs there is but a finite number of repetitions. Thus the ergodic theory produces a limitation on the dynamics.Comment: 4 pages, published versio

    Random walk approach to the d-dimensional disordered Lorentz gas

    Full text link
    A correlated random walk approach to diffusion is applied to the disordered nonoverlapping Lorentz gas. By invoking the Lu-Torquato theory for chord-length distributions in random media [J. Chem. Phys. 98, 6472 (1993)], an analytic expression for the diffusion constant in arbitrary number of dimensions d is obtained. The result corresponds to an Enskog-like correction to the Boltzmann prediction, being exact in the dilute limit, and better or nearly exact in comparison to renormalized kinetic theory predictions for all allowed densities in d=2,3. Extensive numerical simulations were also performed to elucidate the role of the approximations involved.Comment: 5 pages, 5 figure

    Simulational Study on Dimensionality-Dependence of Heat Conduction

    Full text link
    Heat conduction phenomena are studied theoretically using computer simulation. The systems are crystal with nonlinear interaction, and fluid of hard-core particles. Quasi-one-dimensional system of the size of Lx×Ly×Lz(LzLx,Ly)L_x\times L_y\times L_z(L_z\gg L_x,L_y) is simulated. Heat baths are put in both end: one has higher temperature than the other. In the crystal case, the interaction potential VV has fourth-order non-linear term in addition to the harmonic term, and Nose-Hoover method is used for the heat baths. In the fluid case, stochastic boundary condition is charged, which works as the heat baths. Fourier-type heat conduction is reproduced both in crystal and fluid models in three-dimensional system, but it is not observed in lower dimensional system. Autocorrelation function of heat flux is also observed and long-time tails of the form of td/2\sim t^{-d/2}, where dd denotes the dimensionality of the system, are confirmed.Comment: 4 pages including 3 figure

    Wave packet autocorrelation functions for quantum hard-disk and hard-sphere billiards in the high-energy, diffraction regime

    Get PDF
    We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wave length, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.Comment: 24 pages, 13 figure

    Clustering of matter in waves and currents

    Full text link
    The growth rate of small-scale density inhomogeneities (the entropy production rate) is given by the sum of the Lyapunov exponents in a random flow. We derive an analytic formula for the rate in a flow of weakly interacting waves and show that in most cases it is zero up to the fourth order in the wave amplitude. We then derive an analytic formula for the rate in a flow of potential waves and solenoidal currents. Estimates of the rate and the fractal dimension of the density distribution show that the interplay between waves and currents is a realistic mechanism for providing patchiness of pollutant distribution on the ocean surface.Comment: 4 pages, 1 figur
    corecore