11,636 research outputs found
Variable Powder Flow Rate Control in Laser Metal Deposition Processes
This paper proposes a novel technique, called Variable Powder Flow Rate Control (VPFRC), for
the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to
adjust the powder flow rate to maintain a uniform powder deposition per unit length even when
disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the
powder delivery system motor and the powder transport system (i.e., five–meter pipe, powder
dispenser, and cladding head) are first constructed. A general tracking controller is then designed
to track variable powder flow rate references. Since the powder flow rate at the nozzle exit
cannot be directly measured, it is estimated using the powder transport system model. The input
to this model is the DC motor rotation speed, which is estimated on–line using a Kalman filter.
Experiments are conducted to examine the performance of the proposed control methodology.
The experimental results demonstrate that VPFRC is successful in maintaining a uniform track
morphology, even when the motion control system accelerates and decelerates.Mechanical Engineerin
Recommended from our members
The polymeric conformational effect on capacitive deionization performance of graphene oxide/polypyrrole composite electrode
Exploitation of novel faradic materials is an alternative implementation for solving the problem of poor specific electrosorption capacity that conventional carbon materials are encountered in capacitive deionization. Particularly, composite electrode is just a suitable choice because of its potentially high ion-storage ability. Herein, a cyclic voltammetric treatment method with different low limit of potential window was used to manipulate the polymeric conformation and doping level of graphene oxide/polypyrrole (GO/PPy) composite electrode. Based on it, the effect of polymeric structure on the electrosorption performance was systematically studied. When the low limit of potential window is shifted negatively enough, the irreversible polymeric conformational shrinks of GO/PPy are promoted, which not only hinders the insertion process of ions, but also decreases the doping level of polymer due to the intensive interchain-action produced by more entangled polymeric chain. Thus, the number of intercalated ions should decrease, which is expressed by electrochemical impedance spectroscopy (EIS) results and is proportional to the electrosorption capacity of GO/PPy composite electrode in membrane capacitive deionization (MCDI) process. Our work suggests that the less packing density, higher doping level and more charge delocalization on PPy backbone in electrode are beneficial to enhance its capacitive deionization performance
Cylindrical Invisibility Cloak with Simplified Material Parameters is Inherently Visible
It was proposed that perfect invisibility cloaks can be constructed for
hiding objects from electromagnetic illumination (Pendry et al., Science 312,
p. 1780). The cylindrical cloaks experimentally demonstrated (Schurig et al.,
Science 314, p. 997) and proposed (Cai et al., Nat. Photon. 1, p. 224) have
however simplified material parameters in order to facilitate easier
realization as well as to avoid infinities in optical constants. Here we show
that the cylindrical cloaks with simplified material parameters inherently
allow the zeroth-order cylindrical wave to pass through the cloak as if the
cloak is made of a homogeneous isotropic medium, and thus visible. To all
high-order cylindrical waves, our numerical simulation suggests that the
simplified cloak inherits some properties of the ideal cloak, but finite
scatterings exist.Comment: 10 pages, 3 figure
Identifying network communities with a high resolution
Community structure is an important property of complex networks. An
automatic discovery of such structure is a fundamental task in many
disciplines, including sociology, biology, engineering, and computer science.
Recently, several community discovery algorithms have been proposed based on
the optimization of a quantity called modularity (Q). However, the problem of
modularity optimization is NP-hard, and the existing approaches often suffer
from prohibitively long running time or poor quality. Furthermore, it has been
recently pointed out that algorithms based on optimizing Q will have a
resolution limit, i.e., communities below a certain scale may not be detected.
In this research, we first propose an efficient heuristic algorithm, Qcut,
which combines spectral graph partitioning and local search to optimize Q.
Using both synthetic and real networks, we show that Qcut can find higher
modularities and is more scalable than the existing algorithms. Furthermore,
using Qcut as an essential component, we propose a recursive algorithm, HQcut,
to solve the resolution limit problem. We show that HQcut can successfully
detect communities at a much finer scale and with a higher accuracy than the
existing algorithms. Finally, we apply Qcut and HQcut to study a
protein-protein interaction network, and show that the combination of the two
algorithms can reveal interesting biological results that may be otherwise
undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at
http://cic.cs.wustl.edu/qcut/supplemental.pd
Electron-Phonon Interactions for Optical Phonon Modes in Few-Layer Graphene
We present a first-principles study of the electron-phonon (e-ph)
interactions and their contributions to the linewidths for the optical phonon
modes at and K in one to three-layer graphene. It is found that due to
the interlayer coupling and the stacking geometry, the high-frequency optical
phonon modes in few-layer graphene couple with different valence and conduction
bands, giving rise to different e-ph interaction strengths for these modes.
Some of the multilayer optical modes derived from the - mode of
monolayer graphene exhibit slightly higher frequencies and much reduced
linewidths. In addition, the linewidths of K- related modes in
multilayers depend on the stacking pattern and decrease with increasing layer
numbers.Comment: 6 pages,5 figures, submitted to PR
Measurements of Heavy Flavor and Di-electron Production at STAR
Heavy quarks are produced early in the relativistic heavy ion collisions, and
provide an excellent probe into the hot and dense nuclear matter created at
RHIC. In these proceedings, we will discuss recent STAR measurements of heavy
flavor production, to investigate the heavy quark interaction with the medium.
Electromagnetic probes, such as electrons, provide information on the various
stages of the medium evolution without modification by final stage
interactions. Di-electron production measurements by STAR will also be
discussed.Comment: 5 pages, 6 figures, proceedings for CPOD201
- …