1,265 research outputs found

    A Political History of the Valorisation of Cultural Heritage in Italy: Conflicts in a Controversial Social Process

    Get PDF
    Valorisation is one of the two functions used by institutions in the transmission of cultural heritage in Italy. While valorisation is a polysemic concept with an uncertain use and wide-ranging implications, the relationships that have been forged between protection, management, realisation, and valorisation are the subject of a controversy that is in conflict with both scholars and the two different aims of social life: social and cultural progress and economic growth. Through a critical approach and from a sociological perspective, this article shows how these two dimensions are in a conflict that touches both the social purposes attributed to cultural heritage and the cultural process through which heritage is produced

    Sinusoidal nanotextures for light management in silicon thin film solar cells

    Get PDF
    Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low cost glass substrates enabling conversion efficiencies up to 12.1 . Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun facing glass silicon interface into 10 m thin liquid phase crystallized silicon thin film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well balanced compromise of optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin film solar cells on glas

    Sum Rules and Ward Identities in the Kondo Lattice

    Full text link
    We derive a generalized Luttinger-Ward expression for the Free energy of a many body system involving a constrained Hilbert space. In the large NN limit, we are able to explicity write the entropy as a functional of the Green's functions. Using this method we obtain a Luttinger sum rule for the Kondo lattice. One of the fascinating aspects of the sum rule, is that it contains two components, one describing the heavy electron Fermi surface, the other, a sea of oppositely charged, spinless fermions. In the heavy electron state, this sea of spinless fermions is completely filled and the electron Fermi surface expands by one electron per unit cell to compensate the positively charged background, forming a ``large'' Fermi surface. Arbitrarily weak magnetism causes the spinless Fermi sea to annihilate with part of the Fermi sea of the conduction electrons, leading to a small Fermi surface. Our results thus enable us to show that the Fermi surface volume contracts from a large, to a small volume at a quantum critical point. However, the sum rules also permit the possible formation of a new phase, sandwiched between the antiferromagnet and the heavy electron phase, where the charged spinless fermions develop a true Fermi surface.Comment: 24 pages, 4 figures. Version two contains a proof of the "Entropy formula" which connects the entropy directly to the Green's functions. Version three contains corrections to typos and a more extensive discussion of the physics at finite

    Improved Light Management in Crystalline Silicon Thin Film Solar Cells by Advanced Nano Texture Fabrication

    Get PDF
    We present a texturing method for liquid phase crystallized silicon thin film solar cells enabling a maximum achievable short circuit current density of 36.5mA cm 2 due to optimized light management compared to current textured device

    Schwinger Boson approach to the fully screened Kondo model

    Full text link
    We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from local moment behavior to a Fermi liquid with a non-trivial Wilson ratio. When applied to the two impurity model, the mean-field theory describes the "Varma Jones" quantum phase transition between a valence bond state and a heavy Fermi liquid.Comment: 4 pages, 4 figures. Changes to references and text in v

    Tailoring nano textures for optimized light in coupling in liquid phase crystallized silicon thin film solar cells

    Get PDF
    Thin film solar cells based on liquid phase crystallized silicon LPC Si with 8 20 m thick absorber layers demand for advanced light management to achieve high photocurrent densities. Open circuit voltages Voc gt;600 mV underline the high silicon material quality of LPC silicon thin films on nano textured glass superstrates. We present a 500 nm pitched sinusoidal nano texture which outperforms larger pitched gratings with respect to light in coupling at the buried glass silicon interface. In the wavelength range of interest reflection of incident light is minimized to values close to 4 , which is the reflection at the sun facing air glass interface. Further, the electronic material quality of sinusoidally textured devices is analyzed on basis of a comparison of maximum achieved open circuit voltages on different texture types. The Voc on sinusoidally textured glass superstrates could be raised to 630 mV by changing the interlayer deposition method from a PVD to a PECVD process. Thus, we are able to unify high optical and electronic properties of silicon absorber layers on sinusoidal textured glass substrates. These results constitute a crucial step towards fully exploiting the optical potential of LPC silicon thin film solar cell

    Imprinted Nanostructures for Light Management in Crystalline Silicon Thin Film Solar Cells on Glass

    Get PDF
    We present various imprinted nanostructures for light management in liquid phase crystallized silicon thin film solar cells enabling both, increased jsc by enhanced absorption and excellent electronic material quality with Voc values above 640 m

    Quantum critical behavior in itinerant electron systems -- Eliashberg theory and instability of a ferromagnetic quantum-critical point

    Full text link
    We consider the problem of fermions interacting with gapless long-wavelength collective bosonic modes. The theory describes, among other cases, a ferromagnetic quantum-critical point (QCP) and a QCP towards nematic ordering. We construct a controllable expansion at the QCP in two steps: we first create a new, non Fermi-liquid ``zero-order'' Eliashberg-type theory, and then demonstrate that the residual interaction effects are small. We prove that this approach is justified under two conditions: the interaction should be smaller than the fermionic bandwidth, and either the band mass mBm_B should be much smaller than m=pF/vFm = p_F/v_F, or the number of fermionic flavors NN should be large. For an SU(2) symmetric ferromagnetic QCP, we find that the Eliashberg theory itself includes a set of singular renormalizations which can be understood as a consequence of an effective long-range dynamic interaction between quasi-particles, generated by the Landau damping term. These singular renormalizations give rise to a negative non-analytic q3/2q^{3/2} correction to the static spin susceptibility, and destroy a ferromagnetic QCP. We demonstrate that this effect can be understood in the framework of the Ï•4\phi^4 theory of quantum criticality. We also show that the non-analytic q3/2q^{3/2} correction to the bosonic propagator is specific to the SU(2) symmetric case. For systems with a scalar order parameter, the q3/2q^{3/2} contributions from individual diagrams cancel out in the full expression of the susceptibility, and the QCP remains stable.Comment: 37 pages, 10 fig
    • …
    corecore