145 research outputs found

    Pierre Batcheff, the surrealist star

    Full text link

    Developmental Acquisition of a Rapid Calcium-Regulated Vesicle Supply Allows Sustained High Rates of Exocytosis in Auditory Hair Cells

    Get PDF
    Auditory hair cells (HCs) have the remarkable property to indefinitely sustain high rates of synaptic vesicle release during ongoing sound stimulation. The mechanisms of vesicle supply that allow such indefatigable exocytosis at the ribbon active zone remain largely unknown. To address this issue, we characterized the kinetics of vesicle recruitment and release in developing chick auditory HCs. Experiments were done using the intact chick basilar papilla from E10 (embryonic day 10) to P2 (two days post-hatch) by monitoring changes in membrane capacitance and Ca2+ currents during various voltage stimulations. Compared to immature pre-hearing HCs (E10-E12), mature post-hearing HCs (E18-P2) can steadily mobilize a larger readily releasable pool (RRP) of vesicles with faster kinetics and higher Ca2+ efficiency. As assessed by varying the inter-pulse interval of a 100 ms paired-pulse depolarization protocol, the kinetics of RRP replenishment were found much faster in mature HCs. Unlike mature HCs, exocytosis in immature HCs showed large depression during repetitive stimulations. Remarkably, when the intracellular concentration of EGTA was raised from 0.5 to 2 mM, the paired-pulse depression level remained unchanged in immature HCs but was drastically increased in mature HCs, indicating that the Ca2+ sensitivity of the vesicle replenishment process increases during maturation. Concomitantly, the immunoreactivity of the calcium sensor otoferlin and the number of ribbons at the HC plasma membrane largely increased, reaching a maximum level at E18-P2. Our results suggest that the efficient Ca2+-dependent vesicle release and supply in mature HCs essentially rely on the concomitant engagement of synaptic ribbons and otoferlin at the plasma membrane

    Quasiprojectile breakup and isospin equilibration at Fermi energies: an indication of longer projectile-target contact times?

    Full text link
    An investigation of the quasiprojectile breakup channel in semiperipheral and peripheral collisions of 58,64^{58,64}Ni+58,64^{58,64}Ni at 32 and 52 MeV/nucleon is presented. Data have been acquired in the first experimental campaign of the INDRA-FAZIA apparatus in GANIL. The effect of isospin diffusion between projectile and target in the two asymmetric reactions has been highlighted by means of the isospin transport ratio technique, exploiting the neutron-to-proton ratio of the quasiprojectile reconstructed from the two breakup fragments. We found evidence that, for the same reaction centrality, a higher degree of relaxation of the initial isospin imbalance is achieved in the breakup channel with respect to the more populated binary output, possibly indicating the indirect selection of specific dynamical features. We have proposed an interpretation based on different average projectile-target contact times related to the two exit channels under investigation, with a longer interaction for the breakup channel. The time information has been extracted from AMD simulations of the studied systems coupled to GEMINI++: the model calculations support the hypothesis hereby presented

    Adverse Events of Extracorporeal Ultrasound-Guided High Intensity Focused Ultrasound Therapy

    Get PDF
    High-intensity focused ultrasound (HIFU) is considered to be an alternative to surgery. Extracorporeal ultrasound-guided HIFU (USgFU) has been clinically used to treat solid tumors. Preliminary trials in a small sample of a Western population suggested that this modality was safe. Most trials are performed in China thereby providing comprehensive data for understanding the safety profile. The aim of this study was to evaluate adverse events of USgFU therapy.Clinical data were searched in 2 Chinese databases. Adverse events of USgFU were summarized and compared with those of magnetic resonance-guided HIFU (MRgFU; for uterine, bone or breast tumor) and transrectal ultrasound-guided HIFU (for prostate cancer or benign prostate hyperplasia). USgFU treatment was performed using 7 types of device. Side effects were evaluated in 13262 cases. There were fewer adverse events in benign lesions than in malignant lesions (11.81% vs. 21.65%, p<0.0001). Rates of adverse events greatly varied between the disease types (0-280%, p<0.0001) and between the applied HIFU devices in both malignant (10.58-44.38%, p<0.0001) and benign lesions (1.67-17.57%, p<0.0001). Chronological analysis did not demonstrate a decrease in the rate of adverse events. Based upon evaluable adverse events, incidences in USgFU were consistent with those in MRgFU or transrectal HIFU. Some side effects frequently occurred following transrectal HIFU were not reported in USgFU. Several events including intrahepatic metastasis, intraoperative high fever, and occlusions of the superior mesenteric artery should be of particular concern because they have not been previously noted. The types of adverse events suggested that they were ultrasonic lesions.The frequency of adverse events depended on the location of the lesion and the type of HIFU device; however, side effects of USgFU were not yet understood. USgFU did not decrease the incidence of adverse events compared with MRgFU

    Structure and Function of the Hair Cell Ribbon Synapse

    Get PDF
    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years

    Identification of Novel Functional Inhibitors of Acid Sphingomyelinase

    Get PDF
    We describe a hitherto unknown feature for 27 small drug-like molecules, namely functional inhibition of acid sphingomyelinase (ASM). These entities named FIASMAs (Functional Inhibitors of Acid SphingoMyelinAse), therefore, can be potentially used to treat diseases associated with enhanced activity of ASM, such as Alzheimer's disease, major depression, radiation- and chemotherapy-induced apoptosis and endotoxic shock syndrome. Residual activity of ASM measured in the presence of 10 µM drug concentration shows a bimodal distribution; thus the tested drugs can be classified into two groups with lower and higher inhibitory activity. All FIASMAs share distinct physicochemical properties in showing lipophilic and weakly basic properties. Hierarchical clustering of Tanimoto coefficients revealed that FIASMAs occur among drugs of various chemical scaffolds. Moreover, FIASMAs more frequently violate Lipinski's Rule-of-Five than compounds without effect on ASM. Inhibition of ASM appears to be associated with good permeability across the blood-brain barrier. In the present investigation, we developed a novel structure-property-activity relationship by using a random forest-based binary classification learner. Virtual screening revealed that only six out of 768 (0.78%) compounds of natural products functionally inhibit ASM, whereas this inhibitory activity occurs in 135 out of 2028 (6.66%) drugs licensed for medical use in humans

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Fibroblast growth factor receptor expression in outer hair cells of rat cochlea

    No full text
    FIBROBLAST growth factors (FGFs) are critical for normal development of the organ of Corti, and may also protect hair cells from ototoxic damage. Four different fibroblast growth factors are known, three of which have different splice variants in the extracellular immunoglobin-like (Ig) III FGF-binding domain, giving different patterns of sensitivity to the different FGFs. Analysis of a cDNA library of rat outer hair cells by the polymerase chain reaction, using isoform specific primers, showed expression only of FGF receptor 3, splice variant IIIc. This allows us to predict the pattern of sensitivity to applied FGFs, may be useful in targeting outer hair cells selectively during an FGF-based strategy for cochlear therapy. (C) 1998 Lippincott Williams & Wilkins

    Study of the Hoyle state in 12C produced by 20Ne + 12C reactions

    No full text
    Since its discovery, the Hoyle state of 12C has attracted much interest. Its properties have been discussed several times, due to its cluster structure and the astrophysical implications. In this contribution, the Hoyle state decay has been studied using 20Ne+12C reactions at 25 MeV/nucleon. The invariant mass method has been used to get all the properties of the original 12C starting from a 3-α correlation. The background in the reconstructions was removed using the event mixing method. Finally, we made a simulation of the 3-α decay, including the effects of angular and energy resolutions assuming different possible modes. As a first result, we show a qualitative agreement of the experimental data with the simulated sequential decay. Further studies are ongoing to precisely extract the branching ratios and all the uncertainties due to the simulation parameters

    Modélisation des flux de nitrates au sein d'un bassin versant littoral : le bassin de la Charente

    No full text
    [Notes_IRSTEA]rapport provisoire à la CEE du contrat n°aq2500 "trophic capacity of an estuarine ecosystem: determination of biological criteria for the management of cultivated populations of oysters and their socio-economical consequences [Departement_IRSTEA]GMA [TR1_IRSTEA]GMA1-Fonctionnement hydrologique des bassins et des réseaux hydrographiquesLes principales opérations réalisées concernent la maintenance du bassin versant de recherche expérimentale du Ruiné, la caractérisation des activités agricoles et apports de fertilisants azotés sur l'ensemble du bassin de la charente, la quantification de la dénitrification et le modèle de transfert de nitrates
    corecore