4,921 research outputs found

    Zinc Extraction potential of two common crop plants, Nicotiana tabacum and Zea mays

    Get PDF
    A field study was conducted to investigate the efficiency of Zn phytoextraction by Nicotiana tabacum and Zea mays from a soil that had been artificially contaminated by different amounts of ZnSO4 (0, 50, 150, 350, 750 and 1550 mg kg−1 soil) 10 years prior to the present cropping. Increased NaNO3-extractable Zn in soil translated well into shoot concentrations (dry matter) in plants. Zn uptake by Z. mays increased linearly with increasing NaNO3-extractable Zn in soil, while for N. tabacum the increase could be described by a Langmuir isotherm. While Z. mays showed no significant decrease in biomass production up to the highest contamination level in soil, N. tabacum responded with a reduction of plant growth of about 50% compared with control plants at the highest Zn concentrations in soil. Maximum removal of Zn was 13 kg ha−1 y−1 with Z. mays and 11 kg ha−1 y−1 with N. tabacum. Calculated time required to reduce soil Zn from 350 to 150 mg kg−1 was about 55 years for N. tabacum and about 63 years for Z. mays at a soil pH of 4.8. At higher soil pH of 6.0 calculated decontamination time was about 87 years for N. tabacum and more than 200 years for Z. mays. Only small amounts of Zn were translocated into the seeds of N. tabacum and cobs of Z. mays. Therefore, corn cobs of Z. mays could be safely used for fodder and the seeds of N. tabacum, which are rich in oil, for industrial purposes, e.g. in the paint industr

    Valuing initial teacher education at Master's level

    Get PDF
    The future of Master’s-level work in initial teacher education (ITE) in England seems uncertain. Whilst the coalition government has expressed support for Master’s-level work, its recent White Paper focuses on teaching skills as the dominant form of professional development. This training discourse is in tension with the view of professional learning advocated by ITE courses that offer Master’s credits. Following a survey of the changing perceptions of Master’s-level study during a Post Graduate Certificate in Education course by student teachers in four subject groups, this paper highlights how the process of professional learning can have the most impact on how they value studying at a higher level during their early professional development

    Distributed leadership, trust and online communities

    Get PDF
    This paper analyses the role of distributed leadership and trust in online communities. The team-based informal ethos of online collaboration requires a different kind of leadership from that in formal positional hierarchies. Such leadership may be more flexible and sophisticated, capable of encompassing ambiguity and rapid change. Online leaders need to be partially invisible, delegating power and distributing tasks. Yet, simultaneously, online communities are facilitated by the high visibility and subtle control of expert leaders. This paradox: that leaders need to be both highly visible and invisible as appropriate, was derived from prior research and tested in the analysis of online community discussions using a pattern-matching process. It is argued that both leader visibility and invisibility are important for the facilitation of trusting collaboration via distributed leadership. Advanced leadership responses to complex situations in online communities foster positive group interaction and decision-making, facilitated through active distribution of specific tasks

    The influence of infall on the properties of protoplanetary discs : Statistics of masses, sizes, lifetimes, and fragmentation

    Get PDF
    Context. The properties of protoplanetary discs determine the conditions for planet formation. In addition, planets can already form during the early stages of infall. Aims. We constrain physical quantities such as the mass, radius, lifetime, and gravitational stability of protoplanetary discs by studying their evolution from formation to dispersal. Methods. We perform a population synthesis of protoplanetary discs with a total of 50 000 simulations using a 1D vertically integrated viscous evolution code, studying a parameter space of final stellar mass from 0.05 to 5 Msol . Each star-and-disc system is set up shortly after the formation of the protostar and fed by infalling material from the parent molecular cloud core. Initial conditions and infall locations are chosen based on the results from a radiation-hydrodynamic population synthesis of circumstellar discs. We also consider a different infall prescription based on a magnetohydrodynamic (MHD) collapse simulation in order to assess the influence of magnetic fields on disc formation. The duration of the infall phase is chosen to produce a stellar mass distribution in agreement with the observationally determined stellar initial mass function. Results. We find that protoplanetary discs are very massive early in their lives. When averaged over the entire stellar population, the discs have masses of ∼0.3 and 0.1 Msol for systems based on hydrodynamic or MHD initial conditions, respectively. In systems characterised by a final stellar mass ∼1 Msol , we find disc masses of ∼0.7 Msol for the “hydro” case and ∼0.2 Msol for the “MHD” case at the end of the infall phase. Furthermore, the inferred total disc lifetimes are long, ≈5–7 Myr on average. This is despite our choice of a high value of 10^-2 for the background viscosity α-parameter. In addition, we find that fragmentation is common in systems that are simulated using hydrodynamic cloud collapse, with more fragments of larger mass formed in more massive systems. In contrast, if disc formation is limited by magnetic fields, fragmentation may be suppressed entirely. Conclusions. Our work draws a picture quite different from the one often assumed in planet formation studies: protoplanetary discs are more massive and live longer. This means that more mass is available for planet formation. Additionally, when fragmentation occurs, it can affect the disc’s evolution by transporting large amounts of mass radially. We suggest that the early phases in the lives of protoplanetary discs should be included in studies of planet formation. Furthermore, the evolution of the central star, including its accretion history, should be taken into account when comparing theoretical predictions of disc lifetimes with observations

    Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass

    Full text link
    We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD, using simulations with Nf=2N_f=2 flavors of twisted mass Clover-improved fermions with a physical value of the pion mass. Both connected and disconnected contributions are included, enabling us to extract the isoscalar, strange and charm charges for the first time directly at the physical point. Furthermore, the renormalization is computed non-perturbatively for both isovector and isoscalar quantities. We investigate excited state effects by analyzing several sink-source time separations and by employing a set of methods to probe ground state dominance. Our final results for the scalar charges are gSu=5.20(42)(15)(12)g_S^u = 5.20(42)(15)(12), gSd=4.27(26)(15)(12)g_S^d = 4.27(26)(15)(12), gSs=0.33(7)(1)(4)g_S^s=0.33(7)(1)(4), gSc=0.062(13)(3)(5)g_S^c=0.062(13)(3)(5) and for the tensor charges gTu=0.782(16)(2)(13)g_T^u = 0.782(16)(2)(13), gTd=0.219(10)(2)(13)g_T^d = -0.219(10)(2)(13), gTs=0.00319(69)(2)(22)g_T^s=-0.00319(69)(2)(22), gTc=0.00263(269)(2)(37)g_T^c=-0.00263(269)(2)(37) in the MS\overline{\rm MS} scheme at 2~GeV. The first error is statistical, the second is the systematic error due to the renormalization and the third the systematic arising from possible contamination due to the excited states.Comment: 20 pages and 13 figure

    Towards a killer app for the Semantic Web

    Get PDF
    Killer apps are highly transformative technologies that create new markets and widespread patterns of behaviour. IT generally, and the Web in particular, has benefited from killer apps to create new networks of users and increase its value. The Semantic Web community on the other hand is still awaiting a killer app that proves the superiority of its technologies. There are certain features that distinguish killer apps from other ordinary applications. This paper examines those features in the context of the Semantic Web, in the hope that a better understanding of the characteristics of killer apps might encourage their consideration when developing Semantic Web applications

    A first look at maximally twisted mass lattice QCD calculations at the physical point

    Full text link
    In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous Nf=2N_f = 2 results and their phenomenological values. Finally, the strategy for extending simulations to Nf=2+1+1N_f = 2 + 1 + 1 is outlined.Comment: presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German
    corecore