22,077 research outputs found
A general model for motivational analyses of exchange relationships
Model for motivational analysis of exchange relationships between consumer and supplie
High-temperature ''hydrostatic'' extrusion
Quasi-fluids permit hydrostatic extrusion of solid materials. The use of sodium chloride, calcium fluoride, or glasses as quasi-fluids reduces handling, corrosion, and sealing problems, these materials successfully extrude steel, molybdenum, ceramics, calcium carbonate, and calcium oxide. This technique also permits fluid-to-fluid extrusion
Incentive contracting - An annotated and classified modern bibliography
Incentive contracts bibliograph
Design of a helicopter autopilot by means of linearizing transformations
An automatic flight control systems design methods for aircraft that have complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations are discussed. The method is effective for a large class of dynamic systems that require multiaxis control and that have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. The method exploits the possibility of linearizing the system over its operational envelope by transforming the state and control. The linear canonical forms used in the design are described, and necessary and sufficient conditions for linearizability are stated. The control logic has the structure of an exact model follower with linear decoupled model dynamics and possibly nonlinear plant dynamics. The design method is illustrated with an application to a helicopter autopilot design
Nonlinear control of aircraft
Transformations of nonlinear systems were used to design automatic flight controllers for vertical and short takeoff aircraft. Under the assumption that a nonlinear system can be mapped to a controllable linear system, a method using partial differential equations was constructed to approximate transformations in cases where exact ones cannot be found. An application of the design theory to a rotorcraft, the UH-1H helicopter, was presented
Canonical forms for nonlinear systems
Necessary and sufficient conditions for transforming a nonlinear system to a controllable linear system have been established, and this theory has been applied to the automatic flight control of aircraft. These transformations show that the nonlinearities in a system are often not intrinsic, but are the result of unfortunate choices of coordinates in both state and control variables. Given a nonlinear system (that may not be transformable to a linear system), we construct a canonical form in which much of the nonlinearity is removed from the system. If a system is not transformable to a linear one, then the obstructions to the transformation are obvious in canonical form. If the system can be transformed (it is called a linear equivalent), then the canonical form is a usual one for a controllable linear system. Thus our theory of canonical forms generalizes the earlier transformation (to linear systems) results. Our canonical form is not unique, except up to solutions of certain partial differential equations we discuss. In fact, the important aspect of this paper is the constructive procedure we introduce to reach the canonical form. As is the case in many areas of mathematics, it is often easier to work with the canonical form than in arbitrary coordinate variables
Applications to aeronautics of the theory of transformations of nonlinear systems
The development of the transformation theory is discussed. Results and applications concerning the use of this design technique for automatic flight control of aircraft are presented. The theory examines the transformation of nonlinear systems to linear systems. The tracking of linear models by nonlinear plants is discussed. Results of manned simulation are also presented
Approximating linearizations for nonlinear systems
The following problem is examined: given a nonlinear control system dot-x(t) = f(x(t)) + the sum to m terms(i=1) u sub i (t)g sub i (x(t)) on R(n) and a point x(0) in R(n), approximate the system near x(0) by a linear system. One approach is to use the usual Taylor series linearization. However, the controllability properties of both the nonlinear and linear systems depend on certain Lie brackets of the vector field under consideration. This suggests that a linear approximation based on Lie bracket matching should be constructed at x(0). In general, the linearizations based on the Taylor method and the Lie bracket approach are different. However, under certain mild assumptions, it is shown that there is a coordinate system for R(n) near x(0) in which these two types of linearizations agree. The importance of this agreement is indicated by examining the time responses of the nonlinear system and its linear approximation and comparing the lower order kernels in Volterra expansions of each
Individual and corporate sources of motivation - A preliminary investigation
Rating scales of individual and corporate motivations and factor analysis of result
- …