2,545 research outputs found

    Faculty Productivity and Carnegie Institutional Characteristics within AEJMC Programs

    Get PDF
    This article reports the results of a content analysis of faculty vitae from eighteen ACEJMC programs drawn using stratified random sampling by Carnegie Classification. The findings indicate that faculty members differ by Carnegie Classification on research productivity, highest earned degrees, professional experience, time assignments (for research, teaching, and service), contact and credit hours, and external grants.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts

    Get PDF
    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host–symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts’ metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts’ interaction with regional-scale differences in geochemistry.National Science Foundation (U.S.) (OCE-0732369)National Science Foundation (U.S.) (GRF grant no. DGE-1144152)Gordon and Betty Moore Foundation (Investigator)Agouron Institut

    Combining Green Metrics and Digital Twins for Sustainability Planning and Governance of Smart Buildings and Cities

    Get PDF
    Creating a more sustainable world will require a coordinated effort to address the rise of social, economic, and environmental concerns resulting from the continuous growth of cities. Supporting planners with tools to address them is pivotal, and sustainability is one of the main objectives. Modeling and simulation augmenting digital twins can play an important role to implement these tools. Although various green best practices have been utilized over time and there are related attempts at measuring green success, works in the published literature tend to focus on addressing a single problem (e.g., energy efficiency), and a comprehensive approach that takes the multiple facets of sustainable urban planning into consideration has not yet been identified. This paper begins with a review of recent research efforts in green metrics and digital twins. This leads to developing an approach that evaluates organizational green best practices to derive metrics, which are used for computational decision support by digital twins. Furthermore, it leverages these research results and proposes a metric-driven framework for sustainability planning that understands a city as a sociotechnical complex system. Such a framework allows the practitioner to take advantage of recent developments and provides computational decision support for the complex challenge of sustainability planning at the various levels of urban planning and governance

    Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations

    Full text link
    While the investors' responses to price changes and their price forecasts are well accepted major factors contributing to large price fluctuations in financial markets, our study shows that investors' heterogeneous and dynamic risk aversion (DRA) preferences may play a more critical role in the dynamics of asset price fluctuations. We propose and study a model of an artificial stock market consisting of heterogeneous agents with DRA, and we find that DRA is the main driving force for excess price fluctuations and the associated volatility clustering. We employ a popular power utility function, U(c,γ)=c1γ11γU(c,\gamma)=\frac{c^{1-\gamma}-1}{1-\gamma} with agent specific and time-dependent risk aversion index, γi(t)\gamma_i(t), and we derive an approximate formula for the demand function and aggregate price setting equation. The dynamics of each agent's risk aversion index, γi(t)\gamma_i(t) (i=1,2,...,N), is modeled by a bounded random walk with a constant variance δ2\delta^2. We show numerically that our model reproduces most of the ``stylized'' facts observed in the real data, suggesting that dynamic risk aversion is a key mechanism for the emergence of these stylized facts.Comment: 17 pages, 7 figure

    Dispersed Activity during Passive Movement in the Globus Pallidus of the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Treated Primate

    Get PDF
    Parkinson's disease is a neurodegenerative disorder manifesting in debilitating motor symptoms. This disorder is characterized by abnormal activity throughout the cortico-basal ganglia loop at both the single neuron and network levels. Previous neurophysiological studies have suggested that the encoding of movement in the parkinsonian state involves correlated activity and synchronized firing patterns. In this study, we used multi-electrode recordings to directly explore the activity of neurons from the globus pallidus of parkinsonian primates during passive limb movements and to determine the extent to which they interact and synchronize. The vast majority (80/103) of the recorded pallidal neurons responded to periodic flexion-extension movements of the elbow. The response pattern was sinusoidal-like and the timing of the peak response of the neurons was uniformly distributed around the movement cycle. The interaction between the neuronal activities was analyzed for 123 simultaneously recorded pairs of neurons. Movement-based signal correlation values were diverse and their mean was not significantly different from zero, demonstrating that the neurons were not activated synchronously in response to movement. Additionally, the difference in the peak responses phase of pairs of neurons was uniformly distributed, showing their independent firing relative to the movement cycle. Our results indicate that despite the widely distributed activity in the globus pallidus of the parkinsonian primate, movement encoding is dispersed and independent rather than correlated and synchronized, thus contradicting current views that posit synchronous activation during Parkinson's disease

    Size constancy in bat biosonar?

    Get PDF
    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats

    Unusual behaviors in the transport properties of REFe4_{4}P12_{12} (RE: La, Ce, Pr, and Nd)

    Full text link
    We have investigated the resistivity (ρ\rho), thermoelectric power (TEP) and Hall coefficient (RHR_{H}) on high quality single crystals of REFe4_{4}P12_{12}. TEP in CeFe4_{4}P12_{12} is extremely large (\sim 0.5mV/K at 290K) with a peak of \sim 0.75mV/K at around 65K. The Hall mobility also shows a peak at \sim 65K, suggesting carriers with heavy masses developed at lower temperatures related with the f-hybridized band. Both Pr- and Nd- systems exhibit an apparent increase of ρ\rho with decreasing temperature far above their magnetic transition temperatures. In the same temperature ranges, TEP exhibits unusually large absolute values of -50μ\muV/K for PrFe4_{4}P12_{12} and -15μ\muV/K for NdFe4_{4}P12_{12}, respectively. For PrFe4_{4}P12_{12}, such anomalous transport properties suggest an unusual ground state, possibly related with the Quadrupolar Kondo effect.Comment: 5 pages, 8 figure
    corecore