3,082 research outputs found

    Measurement of long-range steric repulsions between microspheres due to an adsorbed polymer

    Get PDF
    We have measured the interparticle potential between pairs of micron-sized silica spheres induced by adsorbed polyethylene oxide polymer using a line-scanned optical tweezer. We found this long-range steric repulsion to be exponential over the range of energies (0.1kBT–5kBT) and polymer molecular weights (452 000–1 580 000) studied, and that the potential scaled with the polymer’s radius of gyration RG. The potential’s exponential decay length was about 0.6RG and its range was about 4RG, although both parameters varied significantly from one pair of spheres to another. The potential’s exponential prefactor was greater than mean-field predictions

    Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface

    Get PDF
    We describe direct imaging measurements of the collective and relative diffusion of two colloidal spheres near a flat plate. The bounding surface modifies the spheres' dynamics, even at separations of tens of radii. This behavior is captured by a stokeslet analysis of fluid flow driven by the spheres' and wall's no-slip boundary conditions. In particular, this analysis reveals surprising asymmetry in the normal modes for pair diffusion near a flat surface.Comment: 4 pages, 4 figure

    Radio and gamma-ray constraints on dark matter annihilation in the Galactic center

    Full text link
    We determine upper limits on the dark matter (DM) self-annihilation cross section for scenarios in which annihilation leads to the production of electron--positron pairs. In the Galactic centre (GC), relativistic electrons and positrons produce a radio flux via synchroton emission, and a gamma ray flux via bremsstrahlung and inverse Compton scattering. On the basis of archival, interferometric and single-dish radio data, we have determined the radio spectrum of an elliptical region around the Galactic centre of extent 3 degrees semi-major axis (along the Galactic plane) and 1 degree semi-minor axis and a second, rectangular region, also centered on the GC, of extent 1.6 degrees x 0.6 degrees. The radio spectra of both regions are non-thermal over the range of frequencies for which we have data: 74 MHz -- 10 GHz. We also consider gamma-ray data covering the same region from the EGRET instrument (about GeV) and from HESS (around TeV). We show how the combination of these data can be used to place robust constraints on DM annihilation scenarios, in a way which is relatively insensitive to assumptions about the magnetic field amplitude in this region. Our results are approximately an order of magnitude more constraining than existing Galactic centre radio and gamma ray limits. For a DM mass of m_\chi =10 GeV, and an NFW profile, we find that the velocity-averaged cross-section must be less than a few times 10^-25 cm^3 s^-1.Comment: 14 pages, 9 figures. Version accepted for publication in PRD. Reference section updated/extended

    New Pseudo-Phase Structure for α\alpha-Pu

    Full text link
    In this paper we propose a new pseudo-phase crystal structure, based on an orthorhombic distortion of the diamond structure, for the ground-state α\alpha-phase of plutonium. Electronic-structure calculations in the generalized-gradient approximation give approximately the same total energy for the two structures. Interestingly, our new pseudo-phase structure is the same as the Pu γ\gamma-phase structure except with very different b/a and c/a ratios. We show how the contraction relative to the γ\gamma phase, principally in the zz direction, leads to an α\alpha-like structure in the [0,1,1] plane. This is an important link between two complex structures of plutonium and opens new possibilities for exploring the very rich phase diagram of Pu through theoretical calculations

    Like-charge attraction through hydrodynamic interaction

    Full text link
    We demonstrate that the attractive interaction measured between like-charged colloidal spheres near a wall can be accounted for by a nonequilibrium hydrodynamic effect. We present both analytical results and Brownian dynamics simulations which quantitatively capture the one-wall experiments of Larsen and Grier (Nature 385, p. 230, 1997).Comment: 10 pages, 4 figure

    Neutrinos and Gamma Rays from Galaxy Clusters

    Full text link
    The next generation of neutrino and gamma-ray detectors should provide new insights into the creation and propagation of high-energy protons within galaxy clusters, probing both the particle physics of cosmic rays interacting with the background medium and the mechanisms for high-energy particle production within the cluster. In this paper we examine the possible detection of gamma-rays (via the GLAST satellite) and neutrinos (via the ICECUBE and Auger experiments) from the Coma cluster of galaxies, as well as for the gamma-ray bright clusters Abell 85, 1758, and 1914. These three were selected from their possible association with unidentified EGRET sources, so it is not yet entirely certain that their gamma-rays are indeed produced diffusively within the intracluster medium, as opposed to AGNs. It is not obvious why these inconspicuous Abell-clusters should be the first to be seen in gamma-rays, but a possible reason is that all of them show direct evidence of recent or ongoing mergers. Their identification with the EGRET gamma-ray sources is also supported by the close correlation between their radio and (purported) gamma-ray fluxes. Under favorable conditions (including a proton spectral index of 2.5 in the case of Abell 85, and sim 2.3 for Coma, and Abell 1758 and 1914), we expect ICECUBE to make as many as 0.3 neutrino detections per year from the Coma cluster of galaxies, and as many as a few per year from the Abell clusters 85, 1758, and 1914. Also, Auger may detect as many as 2 events per decade at ~ EeV energies from these gamma-ray bright clusters.Comment: Accepted for publication in Ap

    S-band Polarization All Sky Survey (S-PASS): survey description and maps

    Get PDF
    We present the S-Band Polarization All Sky Survey (S-PASS), a survey of polarized radio emission over the southern sky at Dec~<−1∘< -1^\circ taken with the Parkes radio telescope at 2.3~GHz. The main aim was to observe at a frequency high enough to avoid strong depolarization at intermediate Galactic latitudes (still present at 1.4 GHz) to study Galactic magnetism, but low enough to retain ample Signal-to-Noise ratio (S/N) at high latitudes for extragalactic and cosmological science. We developed a new scanning strategy based on long azimuth scans, and a corresponding map-making procedure to make recovery of the overall mean signal of Stokes QQ and UU possible, a long-standing problem with polarization observations. We describe the scanning strategy, map-making procedure, and validation tests. The overall mean signal is recovered with a precision better than 0.5\%. The maps have a mean sensitivity of 0.81 mK on beam--size scales and show clear polarized signals, typically to within a few degrees of the Galactic plane, with ample S/N everywhere (the typical signal in low emission regions is 13 mK, and 98.6\% of the pixels have S/N >3> 3). The largest depolarization areas are in the inner Galaxy, associated with the Sagittarius Arm. We have also computed a Rotation Measure map combining S-PASS with archival data from the WMAP and Planck experiments. A Stokes II map has been generated, with a sensitivity limited to the confusion level of 9 mK.Comment: Accepted for publication on MNRAS. Maps are available for download at the website indicated in the manuscrip
    • …
    corecore