62 research outputs found

    Physiological aspects of the determination of comprehensive arterial inflows in the lower abdomen assessed by Doppler ultrasound

    Get PDF
    Non-invasive measurement of splanchnic hemodynamics has been utilized in the clinical setting for diagnosis of gastro-intestinal disease, and for determining reserve blood flow (BF) distribution. However, previous studies that measured BF in a "single vessel with small size volume", such as the superior mesenteric and coeliac arteries, were concerned solely with the target organ in the gastrointestinal area, and therefore evaluation of alterations in these single arterial BFs under various states was sometimes limited to "small blood volumes", even though there was a relatively large change in flow. BF in the lower abdomen (BFAb) is potentially a useful indicator of the influence of comprehensive BF redistribution in cardiovascular and hepato-gastrointestinal disease, in the postprandial period, and in relation to physical exercise. BFAb can be determined theoretically using Doppler ultrasound by subtracting BF in the bilateral proximal femoral arteries (FAs) from BF in the upper abdominal aorta (Ao) above the coeliac trunk. Prior to acceptance of this method of determining a true BFAb value, it is necessary to obtain validated normal physiological data that represent the hemodynamic relationship between the three arteries. In determining BFAb, relative reliability was acceptably high (range in intra-class correlation coefficient: 0.85-0.97) for three arterial hemodynamic parameters (blood velocity, vessel diameter, and BF) in three repeated measurements obtained over three different days. Bland-Altman analysis of the three repeated measurements revealed that day-to-day physiological variation (potentially including measurement error) was within the acceptable minimum range (95% of confidence interval), calculated as the difference in hemodynamics between two measurements. Mean BF (ml/min) was 2951 ± 767 in Ao, 316 ± 97 in left FA, 313 ± 83 in right FA, and 2323 ± 703 in BFAb, which is in agreement with a previous study that measured the sum of BF in the major part of the coeliac, mesenteric, and renal arteries. This review presents the methodological concept that underlies BFAb, and aspects of its day-to-day relative reliability in terms of the hemodynamics of the three target arteries, relationship with body surface area, respiratory effects, and potential clinical usefulness and application, in relation to data previously reported in original dedicated research

    Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery

    No full text
    This study was conducted to investigate skeletal muscle fatty acid (FA) and glycerol kinetics and to determine the contribution of skeletal muscle to whole body FA and glycerol turnover during rest, 2 h of one-leg knee-extensor exercise at 65 % of maximal leg power output, and 3 h of recovery. To this aim, the leg femoral arterial-venous difference technique was used in combination with a continuous infusion of [U-13C]palmitate and [2H5]glycerol in five post-absorptive healthy volunteers (22 ± 3 years). The influence of contamination from non-skeletal muscle tissues, skin and subcutaneous adipose tissue, on FA and glycerol kinetics was studied by catheterization of the femoral vein in antegrade and retrograde directions. Substantially higher net leg FA and glycerol uptakes were observed with a retrograde compared to an antegrade catheter position, as a result of a much lower tracer-calculated leg FA and glycerol release. The whole body FA rate of appearance (Ra) increased with exercise and decreased rapidly in recovery but stayed higher compared to pre-exercise. The leg net FA uptake decreased immediately on cessation of exercise to near pre-exercise level, but the tracer FA uptake and release decreased slowly and reached constant values after ≈1.5 h of recovery similar to pre-exercise. Whole body FA reesterification (FA Rd - FA oxidation; Rd, rate of disappearance) was ≈400 μmol min−1 at rest and during exercise, and increased during recovery to 495 μmol min−1. Leg FA reesterification was 17 μmol min−1 at rest and decreased to 9 μmol min−1 during recovery, due to a larger fraction of leg FA uptake being directed to oxidation. A net glycerol exchange across the leg could not be detected under all conditions, but a substantial leg glycerol uptake was observed, which was substantially higher during exercise. Total body skeletal muscle FA and glycerol uptake/release was estimated to account for 18–25 % of whole body Rd or Ra. In conclusion: (1) skeletal muscle FA and glycerol metabolism, using the leg arterial-venous difference method, can only be studied if contamination from skin and subcutaneous adipose tissue is prevented; (2) whole body FA reesterification is unchanged when going from rest to exercise, but is increased during recovery; (3) in post-absorptive man total body skeletal muscle contributes 17–24 % to whole body FA and glycerol turnover and FA reesterification at rest; (4) glycerol is taken up by skeletal muscle and the uptake increases many fold during exercise
    corecore