604 research outputs found

    Deformed Heisenberg algebra and minimal length

    Full text link
    A one-dimensional deformed Heisenberg algebra [X,P]=if(P)[X,P]=if(P) is studied. We answer the question: For what function of deformation f(P)f(P) there exists a nonzero minimal uncertainty in position (minimal length). We also find an explicit expression for the minimal length in the case of arbitrary function of deformation.Comment: to be published in JP

    Generalized Rayleigh and Jacobi processes and exceptional orthogonal polynomials

    Full text link
    We present four types of infinitely many exactly solvable Fokker-Planck equations, which are related to the newly discovered exceptional orthogonal polynomials. They represent the deformed versions of the Rayleigh process and the Jacobi process.Comment: 17 pages, 4 figure

    Solvable rational extensions of the Morse and Kepler-Coulomb potentials

    Full text link
    We show that it is possible to generate an infinite set of solvable rational extensions from every exceptional first category translationally shape invariant potential. This is made by using Darboux-B\"acklund transformations based on unphysical regular Riccati-Schr\"odinger functions which are obtained from specific symmetries associated to the considered family of potentials

    On Dirac theory in the space with deformed Heisenberg algebra. Exact solutions

    Full text link
    The Dirac equation has been studied in which the Dirac matrices \hat{\boldmath\alpha}, \hat\beta have space factors, respectively ff and f1f_1, dependent on the particle's space coordinates. The ff function deforms Heisenberg algebra for the coordinates and momenta operators, the function f1f_1 being treated as a dependence of the particle mass on its position. The properties of these functions in the transition to the Schr\"odinger equation are discussed. The exact solution of the Dirac equation for the particle motion in the Coulomnb field with a linear dependence of the ff function on the distance rr to the force centre and the inverse dependence on rr for the f1f_1 function has been found.Comment: 13 page

    Families of quasi-exactly solvable extensions of the quantum oscillator in curved spaces

    Full text link
    We introduce two new families of quasi-exactly solvable (QES) extensions of the oscillator in a dd-dimensional constant-curvature space. For the first three members of each family, we obtain closed-form expressions of the energies and wavefunctions for some allowed values of the potential parameters using the Bethe ansatz method. We prove that the first member of each family has a hidden sl(2,R\mathbb{R}) symmetry and is connected with a QES equation of the first or second type, respectively. One-dimensional results are also derived from the dd-dimensional ones with d≄2d \ge 2, thereby getting QES extensions of the Mathews-Lakshmanan nonlinear oscillator.Comment: 30 pages, 8 figures, published versio

    Spectrum generating algebras for position-dependent mass oscillator Schrodinger equations

    Full text link
    The interest of quadratic algebras for position-dependent mass Schr\"odinger equations is highlighted by constructing spectrum generating algebras for a class of d-dimensional radial harmonic oscillators with d≄2d \ge 2 and a specific mass choice depending on some positive parameter α\alpha. Via some minor changes, the one-dimensional oscillator on the line with the same kind of mass is included in this class. The existence of a single unitary irreducible representation belonging to the positive-discrete series type for d≄2d \ge 2 and of two of them for d=1 is proved. The transition to the constant-mass limit α→0\alpha \to 0 is studied and deformed su(1,1) generators are constructed. These operators are finally used to generate all the bound-state wavefunctions by an algebraic procedure.Comment: 21 pages, no figure, 2 misprints corrected; published versio

    Potential algebra approach to position dependent mass Schroedinger equation

    Full text link
    It is shown that for a class of position dependent mass Schroedinger equation the shape invariance condition is equivalent to a potential symmetry algebra. Explicit realization of such algebras have been obtained for some shape invariant potentials

    Quasi-Hermitian supersymmetric extensions of a non-Hermitian oscillator Hamiltonian and of its generalizations

    Full text link
    A harmonic oscillator Hamiltonian augmented by a non-Hermitian \pt-symmetric part and its su(1,1) generalizations, for which a family of positive-definite metric operators was recently constructed, are re-examined in a supersymmetric context. Quasi-Hermitian supersymmetric extensions of such Hamiltonians are proposed by enlarging su(1,1) to a su(1,1/1)∌osp(2/2,R){\rm su}(1,1/1) \sim {\rm osp}(2/2, \R) superalgebra. This allows the construction of new non-Hermitian Hamiltonians related by similarity to Hermitian ones. Some examples of them are reviewed.Comment: 15 pages, no figure; published versio

    A new family of shape invariantly deformed Darboux-P\"oschl-Teller potentials with continuous \ell

    Get PDF
    We present a new family of shape invariant potentials which could be called a ``continuous \ell version" of the potentials corresponding to the exceptional (X_{\ell}) J1 Jacobi polynomials constructed recently by the present authors. In a certain limit, it reduces to a continuous \ell family of shape invariant potentials related to the exceptional (X_{\ell}) L1 Laguerre polynomials. The latter was known as one example of the `conditionally exactly solvable potentials' on a half line.Comment: 19 pages. Sec.5(Summary and Comments): one sentence added in the first paragraph, several sentences modified in the last paragraph. References: one reference ([25]) adde

    The Localization of ss-Wave and Quantum Effective Potential of a Quasi-Free Particle with Position-Dependent Mass

    Full text link
    The properties of the s-wave for a quasi-free particle with position-dependent mass(PDM) have been discussed in details. Differed from the system with constant mass in which the localization of the s-wave for the free quantum particle around the origin only occurs in two dimensions, the quasi-free particle with PDM can experience attractive forces in DD dimensions except D=1 when its mass function satisfies some conditions. The effective mass of a particle varying with its position can induce effective interaction which may be attractive in some cases. The analytical expressions of the eigenfunctions and the corresponding probability densities for the s-waves of the two- and three-dimensional systems with a special PDM are given, and the existences of localization around the origin for these systems are shown.Comment: 12pages, 8 figure
    • 

    corecore