720 research outputs found

    Differential interferometry of QSO broad line regions I: improving the reverberation mapping model fits and black hole mass estimates

    Full text link
    Reverberation mapping estimates the size and kinematics of broad line regions (BLR) in Quasars and type I AGNs. It yields size-luminosity relation, to make QSOs standard cosmological candles, and mass-luminosity relation to study the evolution of black holes and galaxies. The accuracy of these relations is limited by the unknown geometry of the BLR clouds distribution and velocities. We analyze the independent BLR structure constraints given by super-resolving differential interferometry. We developed a three-dimensional BLR model to compute all differential interferometry and reverberation mapping signals. We extrapolate realistic noises from our successful observations of the QSO 3C273 with AMBER on the VLTI. These signals and noises quantify the differential interferometry capacity to discriminate and measure BLR parameters including angular size, thickness, spatial distribution of clouds, local-to-global and radial-to-rotation velocity ratios, and finally central black hole mass and BLR distance. A Markov Chain Monte Carlo model-fit, of data simulated for various VLTI instruments, gives mass accuracies between 0.06 and 0.13 dex, to be compared to 0.44 dex for reverberation mapping mass-luminosity fits. We evaluate the number of QSOs accessible to measures with current (AMBER), upcoming (GRAVITY) and possible (OASIS with new generation fringe trackers) VLTI instruments. With available technology, the VLTI could resolve more than 60 BLRs, with a luminosity range larger than four decades, sufficient for a good calibration of RM mass-luminosity laws, from an analysis of the variation of BLR parameters with luminosity.Comment: 19 pages, 14 figures, accepted by MNRAS on December 5, 201

    First astrophysical results from AMBER/VLTI

    Full text link
    The AMBER instrument installed at the Very Large Telescope (VLT) combines three beams from as many telescopes to produce spectrally dispersed fringes from milli-arcsecond angular scale in the near infrared. Two years after installation, first scientific observations have been carried out during the Science Demonstration Time and the Guaranteed Time mostly on bright sources due to some VLTI limitations. In this paper, we review these first astrophysical results and we show which types of completely new information is brought by AMBER. The first astrophysical results have been mainly focusing on stellar wind structure, kinematics, and its interaction with dust usually concentrated in a disk. Because AMBER has dramatically increased the number of measures per baseline, this instrument brings strong constraints on morphology and models despite a relatively poor (u, v) coverage for each object.Comment: SPIE 6268 proceeding

    Fresnel diffraction in an interferometer: application to MATISSE

    Get PDF
    While doing optical study in an instrument similar to the interferometers dedicated to the Very Large Telescope (VLT), we have to take care of the pupil and focus conjugations. Modules with artificial sources are designed to simulate the stellar beams, in terms of collimation and pupil location. They constitute alignment and calibration tools. In this paper, we present such a module in which the pupil mask is not located in a collimated beam thus introducing Fresnel diffraction. We study the instrumental contrast taking into account the spatial coherence of the source, and the pupil diffraction. The considered example is MATISSE, but this study can apply to any other instrument concerned with Fresnel diffraction.Comment: 8 pages- to appear in Proceedings of SPIE Astronomical Telescopes and Instrumentation 201

    Parasitic Interference in Long Baseline Optical Interferometry: Requirements for Hot Jupiter-like Planet Detection

    No full text
    International audienceThe observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from stray light effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when stray light causes cross talk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appears to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from λ/500 to λ/5 in the L band (λ = 3.5 μm), a parasitic flux of about 1% of the total flux produces a parasitic phase reaching at most one-third of the intrinsic phase. The piston, which can have different origins (instrumental stability, atmospheric perturbations, etc.), thus amplifies the effect of parasitic interference. According to the specifications of piston correction in space or at ground level (respectively λ/500 ≈ 2 nm and λ/30 ≈ 100 nm), the detection of hot Jupiter-like planets, one of the most challenging aims for current ground-based interferometers, limits parasitic radiation to about 5% of the incident intensity. This was evaluated by considering different types of hot Jupiter synthetic spectra. Otherwise, if no fringe tracking is used, the detection of a typical hot Jupiter-like system with a solar-like star would admit a maximum level of parasitic intensity of 0.01% for piston errors equal to λ/15. If the fringe tracking specifications are not precisely observed, it thus appears that the allowed level of parasitic intensity dramatically decreases and may prevent the detection. In parallel, the calibration of the parasitic phase by a reference star, at this accuracy level, seems very difficult. Moreover, since parasitic phase is an object-dependent quantity, the use of a hypothetical phase abacus, directly giving the parasitic phase from a given parasitic flux level, is also impossible. Some instrumental solutions, implemented at the instrument design stage for limiting or preventing this parasitic interference, appear to be crucial and are presented in this paper

    First spectro-interferometric survey of Be stars I. Observations and constraints on the disks geometry and kinematics

    Get PDF
    Context. Classical Be stars are hot non-supergiant stars surrounded by a gaseous circumstellar disk that is responsible for the observed infrared-excess and emission lines. The phenomena involved in the disk formation still remain highly debated. Aims. To progress in the understanding of the physical process or processes responsible for the mass ejections and test the hypothesis that they depend on the stellar parameters, we initiated a survey on the circumstellar environment of the brightest Be stars. Methods. To achieve this goal, we used spectro-interferometry, the only technique that combines high spectral (R=12000) and high spatial (θmin\theta_{\rm min}=4\,mas) resolutions. Observations were carried out at the Paranal observatory with the VLTI/AMBER instrument. We concentrated our observations on the Brγ\gamma emission line to be able to study the kinematics within the circumstellar disk. Our sample is composed of eight bright classical Be stars : α\alpha Col, κ\kappa CMa, ω\omega Car, p Car, δ\delta Cen, μ\mu Cen, α\alpha Ara, and \textit{o} Aqr. Results. We managed to determine the disk extension in the line and the nearby continuum for most targets. We also constrained the disk kinematics, showing that it is dominated by rotation with a rotation law close to the Keplerian one. Our survey also suggests that these stars are rotating at a mean velocity of V/Vc_{\rm c}\,=\,0.82\,±\pm\,0.08. This corresponds to a rotational rate of Ω/Ωc\Omega/\Omega_{\rm c}\,=\,0.95\,±\pm\,0.02 Conclusions. We did not detect any correlation between the stellar parameters and the structure of the circumstellar environment. Moreover, it seems that a simple model of a geometrically thin Keplerian disk can explain most of our spectrally resolved K-band data. Nevertheless, some small departures from this model have been detected for at least two objects (i.e, κ\kappa CMa and α\alpha Col). Finally, our Be stars sample suggests that rotation is the main physical process driving the mass-ejection. Nevertheless, smaller effects from other mechanisms have to be taken into account to fully explain how the residual gravity is compensated.Comment: Astronomy and Astrophysics (2011) Accepte

    Study of the atmospheric refraction in a single mode instrument - Application to AMBER/VLTI

    Get PDF
    International audienceThis paper presents a study of the atmospheric refraction and its effect on the light coupling efficiency in an instrument using single-mode optical fibers. We show the analytical approach which allowed us to assess the need to correct the refraction in J- and H-bands while observing with an 8-m Unit Telescope. We then developed numerical simulations to go further in calculations. The hypotheses on the instrumental characteristics are those of AMBER (Astronomical Multi BEam combineR), the near infrared focal beam combiner of the Very Large Telescope Interferometric mode (VLTI), but most of the conclusions can be generalized to other single-mode instruments. We used the software package caos (Code for Adaptive Optics Systems) to take into account the atmospheric turbulence effect after correction by the ESO system MACAO (Multi-Application Curvature Adaptive Optics). The opto-mechanical study and design of the system correcting the atmospheric refraction on AMBER is then detailed. We showed that the atmospheric refraction becomes predominant over the atmospheric turbulence for some zenith angles z and spectral conditions: for z larger than 30° in J-band for example. The study of the optical system showed that it allows to achieve the required instrumental performance in terms of throughput in J- and H-bands. First observations in J-band of a bright star, alpha Cir star, at more than 30° from zenith clearly showed the gain to control the atmospheric refraction in a single mode instrument, and validated the operating law
    corecore