7,611 research outputs found

    Optimization of the Wound Reparation Process

    Get PDF
    Nowadays, postoperative wound complications are quite frequent in surgery. Various medicines and physical methods are widely used to accelerate reparative regeneration (1,2). So far, the effect of oxygen air ions on the wound healing process has not been studied. Meanwhile, aeroionotherapy, characterized by an anti-oxidant action, can have an inducer effect.The purpose of the research was to study the effect of oxygen air ions on the regeneration of tissue structures of a laparotomic wound. Clinical and laboratory studies were conducted in 48 patients (divided into two groups) with acute peritonitis of appendicular origin. The patients of the basic group underwent aerorionotherapy in the early postoperative period. While using aeroionotherapy, the reparative process was faster and more perfect. The effect of oxygen air ions was accompanied by an acceleration of the inflammatory reaction course, which is manifested by the rapid migration of cellular elements to the wound surface and their differentiation into the connective tissues. This important fact explains the anti-inflammatory effect of such therapy, its capability to inhibit the alterative process and stimulate the reparative process. In the basic group, the intensity of biological consolidation was significantly different from that of the comparison group. Only 3 days after the operation, it was higher than the control value by 23.2%, after 5 days - by 37.7%, after 7 days - by 35.6% (p <0.01). Thus, the obtained data suggest that the negative oxygen air ions should have a rather pronounced regenerative effect

    Equilibration in the time-dependent Hartree-Fock approach probed with the Wigner distribution function

    Full text link
    Calculating the Wigner distribution function in the reaction plane, we are able to probe the phase-space behavior in time-dependent Hartree-Fock during a heavy-ion collision. We compare the Wigner distribution function with the smoothed Husimi distribution function. Observables are defined to give a quantitative measure for local and global equilibration. We present different reaction scenarios by analyzing central and non-central 16O+^{16}O+16O^{16}O and 96Zr+^{96}Zr+132Zn^{132}Zn collisions. It is shown that the initial phase-space volumes of the fragments barely merge. The mean values of the observables are conserved in fusion reactions and indicate a "memory effect" in time-dependent Hartree-Fock. We observe strong dissipation but no evidence for complete equilibration.Comment: 12 pages, 10 figure

    Double bracket dissipation in kinetic theory for particles with anisotropic interactions

    Full text link
    We derive equations of motion for the dynamics of anisotropic particles directly from the dissipative Vlasov kinetic equations, with the dissipation given by the double bracket approach (Double Bracket Vlasov, or DBV). The moments of the DBV equation lead to a nonlocal form of Darcy's law for the mass density. Next, kinetic equations for particles with anisotropic interaction are considered and also cast into the DBV form. The moment dynamics for these double bracket kinetic equations is expressed as Lie-Darcy continuum equations for densities of mass and orientation. We also show how to obtain a Smoluchowski model from a cold plasma-like moment closure of DBV. Thus, the double bracket kinetic framework serves as a unifying method for deriving different types of dynamics, from density--orientation to Smoluchowski equations. Extensions for more general physical systems are also discussed.Comment: 19 pages; no figures. Submitted to Proc. Roy. Soc.

    System coagulative and lytic distress-syndrome at the traumatic illness

    Get PDF
    Purpose - to investigate coagulation-lytic activity of different tissue structures in the early posttraumatic period after pelvic fractures. Material and methods. The study is based on experimental techniques enabling evaluation of hemocoagulation activity of skeletal muscles, liver, kidney, heart, lung, and plasma after pelvic injury (fracture). Results. Changes in coagulation-lytic system after pelvic injury were revealed to evolve not only in blood, but also in different organs (skeletal muscles, liver, kidney, lung, and heart). A systemic coagulation-lytic distress syndrome emerges. General manifestations of hemostasis failure in the early posttraumatic period are characterized by hypercoagulation and inhibition of fibrinolysis. The changes arising are significant in the pathogenesis of thromboembolic complications of traumatic disease. Conclusion. The data obtained in this study suggest a basis for reasonable medical measures aimed at the prevention of critical state of hemocoagulation system by means of target effect on one of its main pathogenetic mechanisms - an extrinsic pathway of blood coagulation

    Collapse and stable self-trapping for Bose-Einstein condensates with 1/r^b type attractive interatomic interaction potential

    Full text link
    We consider dynamics of Bose-Einstein condensates with long-range attractive interaction proportional to 1/rb1/r^b and arbitrary angular dependence. It is shown exactly that collapse of Bose-Einstein condensate without contact interactions is possible only for b≥2b\ge 2. Case b=2b=2 is critical and requires number of particles to exceed critical value to allow collapse. Critical collapse in that case is strong one trapping into collapsing region a finite number of particles. Case b>2b>2 is supercritical with expected weak collapse which traps rapidly decreasing number of particles during approach to collapse. For b<2b<2 singularity at r=0r=0 is not strong enough to allow collapse but attractive 1/rb1/r^b interaction admits stable self-trapping even in absence of external trapping potential

    Axion-induced oscillations of cooperative electric field in a cosmic magneto-active plasma

    Full text link
    We consider one cosmological application of an axionic extension of the Maxwell-Vlasov theory, which describes axionically induced oscillatory regime in the state of global magnetic field evolving in the anisotropic expanding (early) universe. We show that the cooperative electric field in the relativistic plasma, being coupled to the pseudoscalar (axion) and global magnetic fields, plays the role of a regulator in this three-level system; in particular, the cooperative (Vlasov) electric field converts the regime of anomalous growth of the pseudoscalar field, caused by the axion-photon coupling at the inflationary epoch of the universe expansion, into an oscillatory regime with finite density of relic axions. We analyze solutions to the dispersion equations for the axionically induced cooperative oscillations of the electric field in the relativistic plasma.Comment: 7 pages, misprints correcte

    Probability Theory Compatible with the New Conception of Modern Thermodynamics. Economics and Crisis of Debts

    Full text link
    We show that G\"odel's negative results concerning arithmetic, which date back to the 1930s, and the ancient "sand pile" paradox (known also as "sorites paradox") pose the questions of the use of fuzzy sets and of the effect of a measuring device on the experiment. The consideration of these facts led, in thermodynamics, to a new one-parameter family of ideal gases. In turn, this leads to a new approach to probability theory (including the new notion of independent events). As applied to economics, this gives the correction, based on Friedman's rule, to Irving Fisher's "Main Law of Economics" and enables us to consider the theory of debt crisis.Comment: 48p., 14 figs., 82 refs.; more precise mathematical explanations are added. arXiv admin note: significant text overlap with arXiv:1111.610

    A geometric theory of non-local two-qubit operations

    Get PDF
    We study non-local two-qubit operations from a geometric perspective. By applying a Cartan decomposition to su(4), we find that the geometric structure of non-local gates is a 3-Torus. We derive the invariants for local transformations, and connect these local invariants to the coordinates of the 3-Torus. Since different points on the 3-Torus may correspond to the same local equivalence class, we use the Weyl group theory to reduce the symmetry. We show that the local equivalence classes of two-qubit gates are in one-to-one correspondence with the points in a tetrahedron except on the base. We then study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some initially separable states. We provide criteria to determine whether a given two-qubit gate is a perfect entangler and establish a geometric description of perfect entanglers by making use of the tetrahedral representation of non-local gates. We find that exactly half the non-local gates are perfect entanglers. We also investigate the non-local operations generated by a given Hamiltonian. We first study the gates that can be directly generated by a Hamiltonian. Then we explicitly construct a quantum circuit that contains at most three non-local gates generated by a two-body interaction Hamiltonian, together with at most four local gates generated by single qubit terms. We prove that such a quantum circuit can simulate any arbitrary two-qubit gate exactly, and hence it provides an efficient implementation of universal quantum computation and simulation.Comment: 22 pages, 6 figure

    Vortex avalanches and magnetic flux fragmentation in superconductors

    Full text link
    We report results of numerical simulations of non isothermal dendritic flux penetration in type-II superconductors. We propose a generic mechanism of dynamic branching of a propagating hotspot of a flux flow/normal state triggered by a local heat pulse. The branching occurs when the flux hotspot reflects from inhomogeneities or the boundary on which magnetization currents either vanish, or change direction. Then the hotspot undergoes a cascade of successive splittings, giving rise to a dissipative dendritic-type flux structure. This dynamic state eventually cools down, turning into a frozen multi-filamentary pattern of magnetization currents.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let
    • …
    corecore