13,077 research outputs found

    Tillering Response of \u27Monon\u27 And \u27Newton\u27 Winter Wheats Infested With Biotype L Hessian Fly (Diptera: Cecidomyiidae) Larvae

    Get PDF
    Two wheat, Triticum aestivum, cultivars that differed in their ability to tiller were infested by ovipositing Hessian flies, Mayetiola destructor, under similar controlled conditions. Since a larva typically stunts and kills the stem where it feeds and develops, tiller development of fly infested-wheat seedlings is an important plant trait relative to grain yield. \u27Monon\u27 tillered more than \u27Newton at the 0 infestation level (control). \u27Monon\u27 had about the same number of tillers at 0, 1, 2, and 3 puparia (indicative of the number of feeding larvae) per plant; and \u27Newton\u27 had fewer tillers at 0 than 1, 2, or 3 puparia per stem. However, tillering of both cultivars was less at 4 or more puparia per stem, perhaps due to the depletion of plant nutrients. In general, for both cultivars there was a decrease in leaf length, number and wet weight as the number of puparia increased per tiller

    Electroantennogram Responses of the Armyworm (Lepidoptera: Noctuidae) and Cereal Leaf Beetle (Coleoptera: Chrysomelidae) to Volatile Chemicals of Seedling Oats

    Get PDF
    Armyworm, Pseudaletia unipuncta, eIectroantennogram (EAG) responses to 10 volatile chemicals of seedling oats and three of injured green plants were significantly different from each other while cereal leaf beetle, Oulema melallopus, EAG responses were not significantly different. The EAG responses of both species did not vary significantly with respect to sex, age, or between the antennae of the same specimen. (E)-2-hexenol, a compound extracted from injured green plants, yielded the highest peak response for the armyworm while more cereal leaf beetle antennae responded to this chemical than any other chemical. Armyworm antennallife averaged 38 + 20 min while those of the cereal leaf beetle averaged 6 + 14 min

    A Porosity-Length Formalism for Photon-Tiring-Limited Mass Loss from Stars Above the Eddington Limit

    Full text link
    We examine radiatively driven mass loss from stars near and above the Eddington limit (Ledd). We begin by reviewing the instabilities that are expected to form extensive structure near Ledd. We investigate how this "porosity" can reduce the effective coupling between the matter and radiation. Introducing a new "porosity-length'' formalism, we derive a simple scaling for the reduced effective opacity, and use this to derive an associated scaling for the porosity-moderated, continuum-driven mass loss rate from stars that formally exceed Ledd. For a simple super-Eddington model with a single porosity length that is assumed to be on the order of the gravitational scale height, the overall mass loss is similar to that derived in previous porosity work. This is much higher than is typical of line-driven winds, but is still only a few percent of the photon tiring limit--for which the luminosity becomes insufficient to carry the flow out of the gravitational potential. To obtain still stronger mass loss that approaches observationally inferred values near this limit, we introduce a power-law-porosity model in which the associated structure has a broad range of scales. We show that the mass loss rate can be enhanced by a factor that increases with the Eddington parameter Gamma, such that for moderately large Gamma (> 3-4), mass loss rates could approach the photon tiring limit. Together with the ability to drive quite fast outflow speeds, the derived mass loss could explain the large inferred mass loss and flow speeds of giant outbursts in eta Carinae and other LBV stars.Comment: 17 pages, 6 figures, to appear in Ap

    Some Combinatorial Properties of Hook Lengths, Contents, and Parts of Partitions

    Full text link
    This paper proves a generalization of a conjecture of Guoniu Han, inspired originally by an identity of Nekrasov and Okounkov. The main result states that certain sums over partitions p of n, involving symmetric functions of the squares of the hook lengths of p, are polynomial functions of n. A similar result is obtained for symmetric functions of the contents and shifted parts of n.Comment: 20 pages. Correction of some inaccuracies, and a new Theorem 4.

    Three osculating walkers

    Full text link
    We consider three directed walkers on the square lattice, which move simultaneously at each tick of a clock and never cross. Their trajectories form a non-crossing configuration of walks. This configuration is said to be osculating if the walkers never share an edge, and vicious (or: non-intersecting) if they never meet. We give a closed form expression for the generating function of osculating configurations starting from prescribed points. This generating function turns out to be algebraic. We also relate the enumeration of osculating configurations with prescribed starting and ending points to the (better understood) enumeration of non-intersecting configurations. Our method is based on a step by step decomposition of osculating configurations, and on the solution of the functional equation provided by this decomposition

    Storage and Behavior of Plant and Diet-Fed Adult Cereal Leaf Beetle, Oulema Melanopus (Coleoptera: Chrysomelidae)

    Get PDF
    The univoltine life cycle of the cereal leaf beetle Oulema melanopus (L.) in Michigan (Castro et al. 1965) is similar to that reported by Venturi (1942) in Europe. Adults emerge from pupal cells in the soil in mid-June to early July, feed voraciously for about three weeks, and enter aestivation sites. For the remainder of the summer and early autumn only a few adults can be found feeding on late-maturing native grasses. The beetles overwinter and usually emerge in late March to early April and resume feeding. Mating and oviposition occur, and larval development is usually completed by late June in southern Michigan. Techniques for rearing the cereal leaf beetle on greenhouse-grown small grain seedlings have been developed by Connin, et al. (1968). Maintaining these cultures requires collecting field adults, growing host material, and handling the cultures to insure that all stages will be available for study. In Michigan during July adults can be collected more economically and in greater numbers in the field than by rearing in the laboratory. A summary of collection techniques, laboratory feeding and storage conditions for large numbers of field-collected cereal leaf beetles is presented in this paper. In addition, the mortality during storage of newly emerged field collected beetles fed either barley seedlings or an artificial diet is compared

    Area products for stationary black hole horizons

    Full text link
    Area products for multi-horizon stationary black holes often have intriguing properties, and are often (though not always) independent of the mass of the black hole itself (depending only on various charges, angular momenta, and moduli). Such products are often formulated in terms of the areas of inner (Cauchy) horizons and outer (event) horizons, and sometimes include the effects of unphysical "virtual" horizons. But the conjectured mass-independence sometimes fails. Specifically, for the Schwarzschild-de Sitter [Kottler] black hole in (3+1) dimensions it is shown by explicit exact calculation that the product of event horizon area and cosmological horizon area is not mass independent. (Including the effect of the third "virtual" horizon does not improve the situation.) Similarly, in the Reissner-Nordstrom-anti-de Sitter black hole in (3+1) dimensions the product of inner (Cauchy) horizon area and event horizon area is calculated (perturbatively), and is shown to be not mass independent. That is, the mass-independence of the product of physical horizon areas is not generic. In spherical symmetry, whenever the quasi-local mass m(r) is a Laurent polynomial in aerial radius, r=sqrt{A/4\pi}, there are significantly more complicated mass-independent quantities, the elementary symmetric polynomials built up from the complete set of horizon radii (physical and virtual). Sometimes it is possible to eliminate the unphysical virtual horizons, constructing combinations of physical horizon areas that are mass independent, but they tend to be considerably more complicated than the simple products and related constructions currently being mooted in the literature.Comment: V1: 16 pages; V2: 9 pages (now formatted in PRD style). Minor change in title. Extra introduction, background, discussion. Several additional references; other references updated. Minor typos fixed. This version accepted for publication in PRD; V3: Minor typos fixed. Published versio

    Hadron Spin Dynamics

    Get PDF
    Spin effects in exclusive and inclusive reactions provide an essential new dimension for testing QCD and unraveling hadron structure. Remarkable new experiments from SLAC, HERMES (DESY), and the Jefferson Laboratory present many challenges to theory, including measurements at HERMES and SMC of the single spin asymmetries in pion electroproduction, where the proton is polarized normal to the scattering plane. This type of single spin asymmetry may be due to the effects of rescattering of the outgoing quark on the spectators of the target proton, an effect usually neglected in conventional QCD analyses. Many aspects of spin, such as single-spin asymmetries and baryon magnetic moments are sensitive to the dynamics of hadrons at the amplitude level, rather than probability distributions. I illustrate the novel features of spin dynamics for relativistic systems by examining the explicit form of the light-front wavefunctions for the two-particle Fock state of the electron in QED, thus connecting the Schwinger anomalous magnetic moment to the spin and orbital momentum carried by its Fock state constituents and providing a transparent basis for understanding the structure of relativistic composite systems and their matrix elements in hadronic physics. I also present a survey of outstanding spin puzzles in QCD, particularly the double transverse spin asymmetry A_{NN} in elastic proton-proton scattering, the J/psi to rho-pi puzzle, and J/psi polarization at the Tevatron.Comment: Concluding theory talk presented at SPIN2001, the Third Circum-Pan-Pacific Symposium on High Energy Physics, October, 2001, Beijin

    The Pathophysiology of Chronic Relapsing Experimental Allergic Encephalomyelitis in the Lewis Rat

    Get PDF
    Electrophysiological studies were performed in Lewis rats with chronic relapsing experimental allergic encephalomyelitis (EAE) induced by inoculation with guinea-pig spinal cord and adjuvants and treatment with low dose cyclosporin A. During clinical episodes there was conduction failure in the central nervous system (CNS), namely the spinal cord dorsal columns, and in the afferent fibres in the peripheral nervous system (PNS). The following observations indicated that the conduction failure was mainly due to demyelination-induced conduction block: (1) rate-dependent conduction block in the CNS and PNS; (2) temporal dispersion due to slowing of PNS conduction; (3) restoration of PNS conduction by cooling; (4) restoration of CNS conduction by ouabain; (5) previously demonstrated histological evidence of primary demyelination in the dorsal columns, dorsal root ganglia and dorsal roots; and (6) the temporal association of restoration of conduction with remyelination. However, it is likely that CNS and PNS axonal degeneration, which occurs in this disease, also contributed to the conduction failure. In clinical remissions there was restoration of conduction in the CNS and PNS which can be explained by ensheathment/remyelination by oligodendrocytes and Schwann cells, respectively. In most rats during clinical episodes the cerebral somatosensory evoked potential was reduced in amplitude and prolonged in latency, which can be accounted for by demyelination and axonal degeneration in the CNS and PNS components of the afferent pathway. In 2 rats with episodes of EAE, however, this potential was markedly increased in amplitude, which might have been due to demyelination-induced conduction block of descending pathways that normally inhibit synaptic transmission in the afferent pathway. In well-established remission there was residual conduction failure in the CNS and PNS which can be mainly accounted for by axonal degeneration

    Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water

    Full text link
    It has been suggested that high-density amorphous (HDA) ice is a structurally arrested form of high-density liquid (HDL) water, while low-density amorphous (LDA) ice is a structurally arrested form of low-density liquid (LDL) water. Recent experiments and simulations have been interpreted to support the possibility of a second "distinct" high-density structural state, named very high-density amorphous (VHDA) ice, questioning the LDL-HDL hypothesis. We test this interpretation using extensive computer simulations, and find that VHDA is a more stable form of HDA and that in fact VHDA should be considered as the amorphous ice of the quenched HDL.Comment: 5 pages, 4 fig
    • …
    corecore