18 research outputs found

    Fermionic computation is non-local tomographic and violates monogamy of entanglement

    No full text
    We show that the computational model based on local fermionic modes in place of qubits does not satisfy local tomography and monogamy of entanglement, and has mixed states with maximal entanglement of formation. These features directly follow from the parity superselection rule. We generalize quantum superselection rules to general probabilistic theories as sets of linear constraints on the convex set of states. We then provide a link between the cardinality of the superselection rule and the degree of holism of the resulting theory

    A Bonner Sphere Spectrometer for pulsed fields

    No full text
    The use of conventional Bonner Sphere Spectrometers (BSS) in pulsed neutron fields (PNF) is limited by the fact that proportional counters, usually employed as the thermal neutron detectors, suffer from dead time losses and show severe underestimation of the neutron interaction rate, which leads to strong distortion of the calculated spectrum. In order to avoid these limitations, an innovative BSS, called BSS-LUPIN, has been developed for measuring in PNF. This paper describes the physical characteristics of the device and its working principle, together with the results of Monte Carlo simulations of its response matrix. The BSS-LUPIN has been tested in the stray neutron field at the CERN Proton Synchrotron, by comparing the spectra obtained with the new device, the conventional CERN BSS and via Monte Carlo simulations

    A new version of the LUPIN detector: improvements and latest experimental verification

    Get PDF
    LUPIN-II is an upgraded version of LUPIN, a novel rem counter first developed in 2010 specifically conceived to work in pulsed neutron fields (PNFs). The new version introduces some modifications that improve the performance of the detector, in particular extending its upper detection limit in PNFs. This paper discusses the characteristics and the performance of the instrument. Measurements have been carried out in radiation fields characterized by very different conditions: the detector has first been exposed in PNFs with intensity up to 5 μSv per burst, where it could keep the H*(10) underestimation below 20% up to 500 nSv per burst. It has then been tested in operational conditions around particle accelerators, where it has shown performances similar to that of ionization chambers. Its proper functioning has also been verified in high energy mixed fields, where the experimental results matched the Monte Carlo predictions. Its neutron/photon discrimination capability has been tested in a steady-state photon field where, via an innovative technique based on a threshold set on the derivative of the current signal, it was capable of rejecting a photon H*(10) rate of about 25 mSv/h, and in a mixed neutron/photon field, where a time-based discrimination method was employed

    Monitoring reactions for the calibration of relativistic hadron beams

    Get PDF
    The well-known foil activation technique was used to calibrate an ionisation chamber employed for the on-line beam monitoring of a 120 GeV c −1 mixed proton/pion beam at CERN. Two monitoring reactions were employed: the standard 27 Al(p,3pn) 24 Na and the alternative nat Cu(p,x) 24 Na. The parameters on which the technique critically depends and the adopted solutions are thoroughly analysed are the cross-section, the contribution of the competing reactions to the induced activity and the recoil nuclei effect. The experimental results are compared with FLUKA Monte Carlo simulations and with past results obtained with various calibration techniques. The comparison confirms that both reactions can be effectively employed. The nat Cu(p,x) 24 Na reaction shows advantages because its cross-section is known at very high energies with a low uncertainty and the production of 24 Na is not affected by competing low energy neutron-induced reactions. The contribution of the competing reactions in the case of the 27 Al(p,3pn) 24 Na reaction has been estimated to be 4.3%/100 mg cm −2 , whereas the effect of recoil nuclei is negligible

    The lupin detector: Supporting least intrusive beam monitoring technique through neutron detection

    No full text
    The Long interval, Ultra-wide dynamic Pile-up free Neutron rem counter (LUPIN) is a novel detector initially developed for radiation protection purposes, specifically conceived for applications in pulsed neutron fields. The detector has a measurement capability varying over many orders of neutron burst intensity, from a single neutron up to thousands of interactions for each burst, without showing any saturation effect. Whilst LUPIN has been developed for applications in the radiation protection fields, its unique properties make it also well suited to support other beam instrumentation. In this contribution, the design of LUPIN is presented in detail and results from measurements carried out in different facilities summarize its main characteristics. Its potential use as beam loss monitor (BLM) and complementary detector for non-invasive beam monitoring purposes (e.g. to complement a monitor based on proton beam "halo" detection) in medical accelerators is then examined. In the context of its application as a beam loss monitor for hadrontherapy accelerators, results of measurements performed at the Italian National Centre of Hadrontherapy (CNAO) are presented and analysed

    A BONNER SPHERE SPECTROMETER FOR PULSED FIELDS

    No full text

    Instrument intercomparison in the pulsed neutron fields at the CERN HiRadMat facility

    Get PDF
    An intercomparison of the performances of active neutron detectors was carried out in pulsed neutron fi elds in the new HiRadMat facility at CERN. Five detectors were employed: four of them (two ionization chambers and two rem counters) are routinely employed in the CERN radiation monitoring system, while the fi fth is a novel instrument, called LUPIN, speci fi cally conceived for applications in pulsed neutron fi elds. The measurements were performed in the stray fi eld generated by a proton beam of very short duration with momentum of 440 GeV/c impinging on a dump. The beam intensity was steadily increased during the experiment by more than three orders of magnitude, with an H*(10) due to neutrons at the detector reference positions varying between a few nSv per burst and a few m Sv per burst, whereas the gamma contribution to the total H*(10) was negligible. The aim of the experiment was to evaluate the linearity of the detector response in extreme pulsed conditions as a function of the neutron burst in- tensity. The results show that the ionization chambers have a quasi-linear response, very close to the ideal behaviour also for values of H*(10) of a few m Sv/burst; the LUPIN response shows a slight deviation from the ideal curve when the H*(10) per burst is higher than 100 nSv; the rem counters response are characterized by a strong deviation from the linearity for H*(10) values higher than a few tens of nSv
    corecore