644 research outputs found

    Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere

    Full text link
    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams (PCBs), including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analyzed. A method for significantly reducing the SI, by averaging the signal at the detector over a set of PCBs, is described. This novel method is to generate the PCBs by combining two laser beams - Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the SI is effectively suppressed without any high-frequency modulators.Comment: 13 pages, 8 figure

    Reduction of Magnetic Noise in Magnetic Resonance Force Microscopy

    Full text link
    We study the opportunity to reduce a magnetic noise produced by a uniform cantilever with a ferromagnetic particle in magnetic resonance force microscopy (MRFM) applications. We demonstrate theoretically a significant reduction of magnetic noise and the corresponding increase of the MRFM relaxation time using a nonuniform cantilever

    Spin Diffusion and Relaxation in a Nonuniform Magnetic Field

    Full text link
    We consider a quasiclassical model that allows us to simulate the process of spin diffusion and relaxation in the presence of a highly nonuniform magnetic field. The energy of the slow relaxing spins flows to the fast relaxing spins due to the dipole-dipole interaction between the spins. The magnetic field gradient suppresses spin diffusion and increases the overall relaxation time in the system. The results of our numerical simulations are in a good agreement with the available experimental data.Comment: 11 pages and 6 figure

    Beam Wandering in the Atmosphere: The Effect of Partial Coherence

    Full text link
    The effect of a random phase screen on laser beam wander in a turbulent atmosphere is studied theoretically. The method of photon distribution function is used to describe the photon kinetics of both weak and strong turbulence. By bringing together analytical and numerical calculations, we have obtained the variance of beam centroid deflections caused by scattering on turbulent eddies. It is shown that an artificial distortion of the initial coherence of the radiation can be used to decrease the wandering effect. The physical mechanism responsible for this reduction and applicability of our approach are discussed.Comment: 16 pages, 5 figure

    Regular and Random Magnetic Resonance Force Microscopy Signal with a Cantilever Oscillating Parallel to a Sample Surface

    Full text link
    We study theoretically the magnetic resonance force microscopy (MRFM) in oscillating cantilever-driven adiabatic reversals (OSCAR) technique, for the case when the cantilever tip oscillates parallel to the surface of a sample. The main contribution to the MRFM signal is associated with a part of the resonance slice near the surface of the sample. The regular (approximately exponential) decay of the MRFM signal is followed by the non-dissipating random signal. The Fourier spectrum of the random signal has a characteristic peak which can be used for the identification of the signal.Comment: 9 pages, 5 figure

    Production of a pion in association with a high-Q2 dilepton pair in antiproton-proton annihilation at GSI-FAIR

    Full text link
    We evaluate the cross section for anti-p p -> l+ l- pi0 in the forward direction and for large lepton pair invariant mass. In this kinematical region, the leading-twist amplitude factorises into a short-distance matrix element, long-distance dominated antiproton Distribution Amplitudes and proton to pion Transition Distribution Amplitudes (TDA). Using a modelling inspired from the chiral limit for these TDAs, we obtain a first estimate of this cross section, thus demonstrating that this process can be measured at GSI-FAIR.Comment: Latex, 5 pages, 3 figure

    Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature constrain wind power output and circulation cell size

    Full text link
    The kinetic energy budget of the atmosphere's meridional circulation cells is analytically assessed. In the upper atmosphere kinetic energy generation grows with increasing surface temperature difference \$\Delta T_s\$ between the cold and warm ends of a circulation cell; in the lower atmosphere it declines. A requirement that kinetic energy generation is positive in the lower atmosphere limits the poleward cell extension \$L\$ of Hadley cells via a relationship between \$\Delta T_s\$ and surface pressure difference \$\Delta p_s\$: an upper limit exists when \$\Delta p_s\$ does not grow with increasing \$\Delta T_s\$. This pattern is demonstrated here using monthly data from MERRA re-analysis. Kinetic energy generation along air streamlines in the boundary layer does not exceed \$40\$~J~mol\$^{-1}\$; it declines with growing \$L\$ and reaches zero for the largest observed \$L\$ at 2~km height. The limited meridional cell size necessitates the appearance of heat pumps -- circulation cells with negative work output where the low-level air moves towards colder areas. These cells consume the positive work output of the heat engines -- cells where the low-level air moves towards the warmer areas -- and can in theory drive the global efficiency of atmospheric circulation down to zero. Relative contributions of \$\Delta p_s\$ and \$\Delta T_s\$ to kinetic energy generation are evaluated: \$\Delta T_s\$ dominates in the upper atmosphere, while \$\Delta p_s\$ dominates in the lower. Analysis and empirical evidence indicate that the net kinetic power output on Earth is dominated by surface pressure gradients, with minor net kinetic energy generation in the upper atmosphere. The role of condensation in generating surface pressure gradients is discussed.Comment: 26 pages, 9 figures, 2 tables; re-organized presentation, more discussion and a new figure (Fig. 4) added; in Fig. 3 the previously invisible dots (observations) can now be see

    Photon storage in Lambda-type optically dense atomic media. II. Free-space model

    Full text link
    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we presented a universal physical picture for describing a wide range of techniques for storage and retrieval of photon wave packets in Lambda-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo based techniques. This universal picture produced an optimal control strategy for photon storage and retrieval applicable to all approaches and yielded identical maximum efficiencies for all of them. In the present paper, we present the full details of this analysis as well some of its extensions, including the discussion of the effects of non-degeneracy of the two lower levels of the Lambda system. The analysis in the present paper is based on the intuition obtained from the study of photon storage in the cavity model in the preceding paper [Gorshkov et al., Phys. Rev. A 76, 033804 (2007)].Comment: 26 pages, 8 figures. V2: significant changes in presentation, new references, higher resolution of figure
    • …
    corecore