112,497 research outputs found

    Bs Mixing, DeltaGamma_s and CP Violation

    Full text link
    We discuss the results from the Tevatron experiments on mixing and {\sf CP} violation in the Bs−Bˉs0B_s-\bar{B}_s^0 system, with particular emphasis to the first measurements of the decay width-difference ΔΓs\Delta\Gamma_s and the {\sf CP} violating phase βs\beta_s using flavor tagging information. We also briefly review the charge asymmetry measurements in semileptonic BsB_s decays and in B±→J/ψK±B^\pm \to J/\psi K^\pm decays.Comment: 6 pages, 4 figures, Pub. Proceedings of the XLIIIrd Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, March 1-8, 200

    Combinatorial point for higher spin loop models

    Full text link
    Integrable loop models associated with higher representations (spin k/2) of U_q(sl(2)) are investigated at the point q=-e^{i\pi/(k+2)}. The ground state eigenvalue and eigenvectors are described. Introducing inhomogeneities into the models allows to derive a sum rule for the ground state entries.Comment: latest version adds some reference

    Non-local scaling operators with entanglement renormalization

    Get PDF
    The multi-scale entanglement renormalization ansatz (MERA) can be used, in its scale invariant version, to describe the ground state of a lattice system at a quantum critical point. From the scale invariant MERA one can determine the local scaling operators of the model. Here we show that, in the presence of a global symmetry G\mathcal{G}, it is also possible to determine a class of non-local scaling operators. Each operator consist, for a given group element g∈Gg\in\mathcal{G}, of a semi-infinite string \tGamma_g with a local operator ϕ\phi attached to its open end. In the case of the quantum Ising model, G=Z2\mathcal{G}= \mathbb{Z}_2, they correspond to the disorder operator μ\mu, the fermionic operators ψ\psi and ψˉ\bar{\psi}, and all their descendants. Together with the local scaling operators identity I\mathbb{I}, spin σ\sigma and energy ϵ\epsilon, the fermionic and disorder scaling operators ψ\psi, ψˉ\bar{\psi} and μ\mu are the complete list of primary fields of the Ising CFT. Thefore the scale invariant MERA allows us to characterize all the conformal towers of this CFT.Comment: 4 pages, 4 figures. Revised versio

    Characterizing topological order by studying the ground states of an infinite cylinder

    Full text link
    Given a microscopic lattice Hamiltonian for a topologically ordered phase, we describe a tensor network approach to characterize its emergent anyon model and, in a chiral phase, also its gapless edge theory. First, a tensor network representation of a complete, orthonormal set of ground states on a cylinder of infinite length and finite width is obtained through numerical optimization. Each of these ground states is argued to have a different anyonic flux threading through the cylinder. In a chiral phase, the entanglement spectrum of each ground state is seen to reveal a different sector of the corresponding gapless edge theory. A quasi-orthogonal basis on the torus is then produced by chopping off and reconnecting the tensor network representation on the cylinder. Elaborating on the recent proposal of [Y. Zhang et al. Phys. Rev. B 85, 235151 (2012)], a rotation on the torus yields an alternative basis of ground states and, through the computation of overlaps between bases, the modular matrices S and U (containing the mutual and self statistics of the different anyon species) are extracted. As an application, we study the hard-core boson Haldane model by using the two-dimensional density matrix renormalization group. A thorough characterization of the universal properties of this lattice model, both in the bulk and at the edge, unambiguously shows that its ground space realizes the \nu=1/2 bosonic Laughlin state.Comment: 10 pages, 11 figure

    A search for Z' in muon neutrino associated charm production

    Get PDF
    In many extensions of the Standard Model the presence of an extra neutral boson, Z', is invoked. A precision study of weak neutral-current exchange processes involving only second generation fermions is still missing. We propose a search for Z' in muon neutrino associated charm production. This process only involves Z' couplings with fermions from the second generation. An experimental method is thoroughly described using an ideal detector. As an application, the accuracy reachable with present and future experiments has been estimated.Comment: 13 pages, 3 figures, late

    The Razumov-Stroganov conjecture: Stochastic processes, loops and combinatorics

    Full text link
    A fascinating conjectural connection between statistical mechanics and combinatorics has in the past five years led to the publication of a number of papers in various areas, including stochastic processes, solvable lattice models and supersymmetry. This connection, known as the Razumov-Stroganov conjecture, expresses eigenstates of physical systems in terms of objects known from combinatorics, which is the mathematical theory of counting. This note intends to explain this connection in light of the recent papers by Zinn-Justin and Di Francesco.Comment: 6 pages, 4 figures, JSTAT News & Perspective
    • …
    corecore