27 research outputs found

    Polarization and wavelength diversities of Gulf Stream fronts imaged by AIRSAR

    Get PDF
    During the 1990 Gulf Stream Experiment, NASA/JPL AIRSAR imaged the north edge of the Gulf Stream near the coast of Virginia. Simultaneous in-situ measurements of currents, temperatures, salinities, etc. were made for several crossings of the north edge by the R/V Cape Henlopen. Measurements identified two fronts with shearing and converging flows. The polarimetric SAR images from the fronts showed two bright linear features. One of them corresponds to the temperature front, which separated the warm Gulf Stream water to the south from a cool, freshwater filament to the north. The other line, located about 8 km north of the temperature front, is believed to correspond to the velocity front between the filament and the slope water. At these fronts, wave-current interactions produced narrow bands of steep and breaking waves manifesting higher radar returns in polarimetric SAR images. In general, our AIRSAR imagery shows that the signal-to-clutter ratio of radar cross sections for the temperature front is higher than that of the velocity front. In this paper, we study the polarization and wavelength diversities of radar response of these two fronts using the P-, L-, and C-Band Polarimetric SAR data. The north-south flight path of the AIRSAR crossed the temperature front several times and provided valuable data for analysis. Three individual passes are investigated. We found that for the temperature front, the cross-pol (HV) responses are much higher than co-pol responses (VV and HH), and that P-Band HV has the highest signal to clutter ratio. For the velocity front, the ratio is the strongest in P-Band VV, and it is indistinguishable for all polarizations in C-Band. The radar cross sections for all three polarization (HH, HV, and VV) and for all three bands are modelled using an ocean wave model and a composite Bragg scattering model. In our initial investigations, the theoretical model agrees qualitatively with the AIRSAR observations

    Investigation of AIRSAR signatures of the Gulf Stream

    Get PDF
    Extensive Airborne Synthetic Aperture Radar (AIRSAR) measurements were made on 20 July 1990 during the NRL Gulf Stream (GS) experiment which addressed a number of scientific questions relating to SAR imaging of the ocean surface in the presence of variable currents and the background thermohaline circulation. The nature of the electromagnetic (e.m.) backscatter from the North edge of the GS using polarimetric signatures and amplitude imagery from the AIRSAR data is addressed

    3D acoustic propagation through an estuarine salt wedge at low-to-mid-frequencies: Modeling and measurement

    Get PDF
    Author Posting. © Acoustical Society of America, 2019. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 146(3),(2019): 1888-1902, doi:10.1121/1.5125258.The estuarine salt wedge presents a dynamic and highly refractive waveguide, the acoustic propagation characteristics of which are controlled by the water column sound speed gradient and boundary interactions. Acoustically, the salt wedge consists of two isospeed layers separated by a thin, three-dimensional (3D), high-gradient layer. The behavior of a broadband (500–2000 Hz) acoustic field under the influence of an estuarine salt wedge in the Columbia River estuary is explored using two 3D acoustic propagation models: 3D rays and 3D parabolic equation. These model results are compared to data collected during the field experiment. Results demonstrate that the dominant physical mechanism controlling acoustic propagation in this waveguide shifts from 3D bottom scatter in a non-refractive waveguide (before the entrance of the salt wedge) to 3D acoustic refraction with minimal bottom interaction in a refractive waveguide (when the salt wedge occupies the acoustic transect). Vertical and horizontal refraction in the water column and out-of-plane scattering by the bottom are clearly evident at specific narrowband frequencies; however, these mechanisms contribute to, but do not account for, the total observed broadband transmission loss.Environmental input to the acoustic models included high resolution bathymetric survey data provided by Guy Gelfenbaum (USGS), and modeled temperature and salinity profiles of the water column provided by Antonio Baptista, Charles Seaton, and Paul Turner at CMOP. The authors thank Derek Olson (NPS) for invaluable assistance with running the 3DPE model on NPS HPC resources. This work was supported by the Office of Naval Research.2020-03-3

    Amplitude equations for a system with thermohaline convection

    Full text link
    The multiple scale expansion method is used to derive amplitude equations for a system with thermohaline convection in the neighborhood of Hopf and Taylor bifurcation points and at the double zero point of the dispersion relation. A complex Ginzburg-Landau equation, a Newell-Whitehead-type equation, and an equation of the Ï•4\phi^4 type, respectively, were obtained. Analytic expressions for the coefficients of these equations and their various asymptotic forms are presented. In the case of Hopf bifurcation for low and high frequencies, the amplitude equation reduces to a perturbed nonlinear Schr\"odinger equation. In the high-frequency limit, structures of the type of "dark" solitons are characteristic of the examined physical system.Comment: 21 pages, 8 figure
    corecore