47 research outputs found

    Enzymatic colouration with laccase and peroxidases : recent progress

    Get PDF
    Enzymes have received significant attention as alternative catalysts to chemical auxiliaries in textile processing. For example, laccases and peroxidises are promising alternatives for bleaching and denim stone washing processes. Similarly, the ability to oxidise different phenolic substrates and dye precusors resulting in the formation of different coloured polymeric molecules is being exploited for developing green chemistry dyeing processes. The enzymatic process is simpler than conventional coloration processes, giving economic and environmental benefits. In this review, the applications of laccase and peroxidise enzymes in dyeing processes of various textile meterials is discussed.This work was supported by the Fundamental Research Funds for the Central Universities JUSRP211A02 and JUSRP21001; the Open Project Program of Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University KLET1007 and the Open Project Program of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, DongHua University LK1005

    Antimicrobial and antioxidant linen via laccase-assisted grafting

    Get PDF
    A laccase from Ascomycetemyceliophthora thermophila was used to assist the binding of chitosan and catechin onto a previous enzymatically oxidized linen surface. The process consists of the pre-treatment of the linen with laccase followed by the application of chitosan in a first step and catechin plus laccase in a second step. The results presented here support the conclusion that laccase is able to oxidize phenols naturally existing in flax fibres, and that the o-quinones formed promote the attachment of chitosan or/and catechin. The pre-treatment of linen with laccase is therefore the key factor for the success of catechin and chitosan grafting. A multifunctional linen product with both antioxidant and antibacterial properties was obtained with an acceptable level of durability in terms of end user requirements.Carla Silva would like to acknowledge the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) for funding under the scholarship SFRH/BPD/46515/2008

    Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility

    Get PDF
    The ability of laccases from Trametes villosa (TvL), Myceliophthora thermophila (MtL), Trametes hirsuta (ThL) and Bacillus subtilis (BsL) to improve the dispersion properties of calcium lignosulfonates 398 in the presence of HBT as a mediator was investigated. Size exclusion chromatography showed an extensive increase in molecular weight of the samples incubated with TvL and ThL by 107% and 572% from 28400 Da after 17 h of incubation, respectively. Interestingly, FTIR spectroscopy, 13C NMR and Py-GC/MS analysis of the treated samples suggested no substantial changes in the aromatic signal of the lignosulfonates, a good indication of the ability of TvL/ThL-HBT systems to limit their effect on functional groups without degrading the lignin backbone. Further, the enzymatic treatments led to a general increase in the dispersion properties, indeed a welcome development for its application in polymer blends.Financial support from the BIORENEW EU-project (NMP2-CT-2006-26456), Austrian Academic Exchange Programme (OEAD) and the Spanish projects BIO2007-28720-E, BIO2008-01533, and AGL2008-00709 is acknowledged

    Polymerisation of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility

    Get PDF
    Prasetyo, Endry Nugroho et al.--The ability of laccases from Trametes villosa (TvL), Myceliophthora thermophila (MtL), Trametes hirsuta (ThL) and Bacillus subtilis (BsL) to improve the dispersion properties of calcium lignosulfonates 398 in the presence of HBT as a mediator was investigated. Size exclusion chromatography showed an extensive increase in molecular weight of the samples incubated with TvL and ThL by 107% and 572% from 28400 Da after 17 h of incubation, respectively. Interestingly, FTIR spectroscopy, 13C NMR and Py-GC/MS analysis of the treated samples suggested no substantial changes in the aromatic signal of the lignosulfonates, a good indication of the ability of TvL/ThL-HBT systems to limit their effect on functional groups without degrading the lignin backbone. Further, the enzymatic treatments led to a general increase in the dispersion properties, indeed a welcome development for its application in polymer blends.Financial support from the BIORENEW EU-project (NMP2-CT-2006-26456), Austrian Academic Exchange Programme (ÖEAD) and the Spanish projects BIO2007-28720-E, BIO2008-01533, and AGL2008-00709 is acknowledged.Peer reviewe

    Specificities of a chemically modified laccase from trametes hirsuta on soluble and cellulose-bound substrates

    Get PDF
    Laccases could prevent fabrics and garments from re-deposition of dyes during washing and finishing processes by degrading the solubilized dye. However, laccase action must be restricted to solubilized dye molecules thereby avoiding decolorization of fabrics. Chemical modification of enzymes can provide a powerful tool to change the adsorption behaviour of enzymes on water insoluble polymers. Polyethylene glycol (PEG) was covalently attached onto a laccase from Trametes hirsuta. Different molecular weights of the synthetic polymer were tested in terms of adsorption behaviour and retained laccase activity. Covalent attachment of PEG onto the laccase resulted in enhanced enzyme stability while with increasing molecular weight of attached PEG the substrate affinity for the laccase conjugate decreased. The activity of the modified laccases on fibre bound dye was drastically reduced decreasing the adsorption of the enzyme on various fabrics. Compared to the 5 kDa PEG laccase conjugate (K/S value 47.60

    Azo Dyes, Their Environmental Effects, and Defining a Strategy for Their Biodegradation and Detoxification

    Get PDF
    Intenzivan industrijski razvoj popraćen je sve većom kompleksnošću sastava otpadnih voda, što u smislu učinkovite zaštite okoliša i održivog razvoja nalaže potrebu pospješivanja kvalitete postojećih te uvođenjem novih postupaka obrade otpadnih voda, kao iznimno važnog čimbenika u interakciji čovjeka i okoliša. Posebnu znanstveno-tehnološku pozornost zahtijevaju novosintetizirani ksenobiotici, poput azo-boja, koji su u prirodi veoma teško razgradivi. Azo-boje podložne su bioakumulaciji, a zbog alergijskih, kancerogenih, mutagenih i teratogenih svojstava nerijetko su prijetnja zdravlju ljudi i očuvanju okoliša. Primjenu fi zikalnokemijskih metoda za uklanjanje azo-boja iz otpadnih voda često ograničavaju visoke cijene, potrebe za odlaganjem nastalog štetnog mulja ili nastanak toksičnih sastojaka razgradnje. Biotehnološki postupci su, zbog mogućnosti ekonomične provedbe i postizanja potpune biorazgradnje, a time i detoksifi kacije, sve zastupljeniji u obradi svih vrsta otpadnih voda, pa tako i onih koje sadržavaju azo-boje.Intense industrial development has been accompanied by the production of wastewaters of very complex content, which pose a serious hazard to the environment, put at risk sustainable development, and call for new treatment technologies that would more effectively address the issue. One particular challenge in terms of science and technology is how to biodegrade xenobiotics such as azo dyes, which practically do not degrade under natural environmental conditions. These compounds tend to bioaccumulate in the environment, and have allergenic, carcinogenic, mutagenic, and teratogenic properties for humans. Removal of azo dyes from effl uents is mostly based on physical-chemical methods. These methods are often very costly and limited, as they accumulate concentrated sludge, which also poses a significant secondary disposal problem, or produce toxic end-products. Biotechnological approach may offer alternative, lowcost biological treatment systems that can completely biodegrade and detoxify even the hard-to-biodegrade azo dyes

    Delivery of Biomolecules Using Chitosan Wound Dressings

    No full text
    The role of wound dressings has significantly transformed from by providing a simple protective function to dressings that actively participate in every stage of the wound healing process. Chitosan is one of the most widely exploited materials for the synthesis of many functional wound dressings that actively participate at every wound healing stage from facilitating blood clotting to remodelling. In addition to its natural wound healing properties, chitosan is also a versatile polymer that is compatible with many drugs. This has witnessed the increase in the application of chitosan wound dressings for the delivery of a wide variety of structurally different biomolecules that promote wound healing. This chapter reviews the different biomolecules that have been incorporated into different forms of designed chitosan wound dressing materials

    Chitosan: Sources, Processing and Modification Techniques

    No full text
    Chitosan, a copolymer of glucosamine and N‐acetyl glucosamine, is derived from chitin. Chitin is found in cell walls of crustaceans, fungi, insects and in some algae, microorganisms, and some invertebrate animals. Chitosan is emerging as a very important raw material for the synthesis of a wide range of products used for food, medical, pharmaceutical, health care, agriculture, industry, and environmental pollution protection. This review, in line with the focus of this special issue, provides the reader with (1) an overview on different sources of chitin, (2) advances in techniques used to extract chitin and converting it into chitosan, (3) the importance of the inherent characteristics of the chitosan from different sources that makes them suitable for specific applications and, finally, (4) briefly summarizes ways of tailoring chitosan for specific applications. The review also presents the influence of the degree of acetylation (DA) and degree of deacetylation (DDA), molecular weight (Mw) on the physicochemical and biological properties of chitosan, acid‐base behavior, biodegradability, solubility, reactivity, among many other properties that determine processability and suitability for specific applications. This is intended to help guide researchers select the right chitosan raw material for their specific applications

    Biotechnological production and high potential of furan-based renewable monomers and polymers

    No full text
    Of the 25 million tons of plastic waste produced every year in Europe, 40% of these are not reused or recycled, thus contributing to environmental pollution, one of the major challenges of the 21st century. Most of these plastics are made of petrochemical-derived polymers which are very difficult to degrade and as a result, a lot of research efforts have been made on more environmentally friendly alternatives. Bio-based monomers, derived from renewable raw materials, constitute a possible solution for the replacement of oil-derived monomers, with furan derivatives that emerged as platform molecules having a great potential for the synthesis of biobased polyesters, polyamides and their copolymers. This review article summarizes the latest developments in biotechnological production of furan compounds that can be used in polymer chemistry as well as in their conversion into polymers. Moreover, the biodegradability of the resulting materials is discussed
    corecore