703 research outputs found

    Broadband optical gain via interference in the free electron laser: principles and proposed realizations

    Get PDF
    We propose experimentally simplified schemes of an optically dispersive interface region between two coupled free electron lasers (FELs), aimed at achieving a much broader gain bandwidth than in a conventional FEL or a conventional optical klystron composed of two separated FELs. The proposed schemes can {\it universally} enhance the gain of FELs, regardless of their design when operated in the short pulsed regime

    Evolution of Baryon-Free Matter Produced in Relativistic Heavy-Ion Collisions

    Full text link
    A 3-fluid hydrodynamic model is introduced for simulating heavy-ion collisions at incident energies between few and about 200 AGeV. In addition to the two baryon-rich fluids of 2-fluid models, the new model incorporates a third, baryon-free (i.e. with zero net baryonic charge) fluid which is created in the mid-rapidity region. Its evolution is delayed due to a formation time τ\tau, during which the baryon-free fluid neither thermalizes nor interacts with the baryon-rich fluids. After formation it thermalizes and starts to interact with the baryon-rich fluids. It is found that for τ\tau=0 the interaction strongly affects the baryon-free fluid. However, at reasonable finite formation time, τ\tau=1 fm/c, the effect of this interaction turns out to be substantially reduced although still noticeable. Baryonic observables are only slightly affected by the interaction with the baryon-free fluid.Comment: 17 pages, 3 figures, submitted to the issue of Phys. of Atomic Nuclei dedicated to S.T. Belyaev on the occasion of his 80th birthday, typos correcte

    Chemical Freeze-out of Strange Particles and Possible Root of Strangeness Suppression

    Full text link
    Two approaches to treat the chemical freeze-out of strange particles in hadron resonance gas model are analyzed. The first one employs their non-equillibration via the usual \gamma_s factor and such a model describes the hadron multiplicities measured in nucleus-nucleus collisions at AGS, SPS and RHIC energies with \chi^2/dof = 1.15. Surprisingly, at low energies we find not the strangeness suppression, but its enhancement. Also we suggest an alternative approach to treat the strange particle freeze-out separately, but with the full chemical equilibration. This approach is based on the conservation laws which allow us to connect the freeze-outs of strange and non-strange hadrons. Within the suggested approach the same set of hadron multiplicities can be described better than within the conventional approach with \chi^2/dof = 1.06. Remarkably, the fully equilibrated approach describes the strange hyperons and antihyperons much better than the conventional one.Comment: 6 pages, 5 figure

    Second virial coefficients of light nuclear clusters and their chemical freeze-out in nuclear collisions

    Full text link
    Here we develop a new strategy to analyze the chemical freeze-out of light (anti)nuclei produced in high energy collisions of heavy atomic nuclei within an advanced version of the hadron resonance gas model. It is based on two different, but complementary approaches to model the hard-core repulsion between the light nuclei and hadrons. The first approach is based on an approximate treatment of the equivalent hard-core radius of a roomy nuclear cluster and pions, while the second approach is rigorously derived here using a self-consistent treatment of classical excluded volumes of light (anti)nuclei and hadrons. By construction, in a hadronic medium dominated by pions, both approaches should give the same results. Employing this strategy to the analysis of hadronic and light (anti)nuclei multiplicities measured by ALICE at sNN=2.76\sqrt{s_{NN}} =2.76 TeV and by STAR at sNN=200\sqrt{s_{NN}} =200 GeV, we got rid of the existing ambiguity in the description of light (anti)nuclei data and determined the chemical freeze-out parameters of nuclei with high accuracy and confidence. At ALICE energy the nuclei are frozen prior to the hadrons at the temperature T=175.13.9+2.3T = 175.1^{+2.3}_{-3.9} MeV, while at STAR energy there is a single freeze-out of hadrons and nuclei at the temperature T=167.2±3.9T = 167.2 \pm 3.9 MeV. We argue that the found chemical freeze-out volumes of nuclei can be considered as the volumes of quark-gluon bags that produce the nuclei at the moment of hadronization.Comment: 15 pages, 4 figures, 3 table

    The study of the proton-proton collisions at the beam momentum 1628 MeV/c

    Full text link
    The detailed investigation of the single pion production reactions pppnπ+pp\to pn\pi^{+} and ppppπopp\to pp\pi^{o} at the incident proton momentum 1628 MeV/c has been carried out. The data are analyzed in the framework of the event-by-event maximum likelihood method together with the ppppπ0pp\to pp\pi^{0} data measured earlier in the energy region below 1 GeV. At 1628 MeV/c the largest contributions stem from the 3P2^{3}P_{2}, 3P1^{3}P_{1}, 3P0^{3}P_{0}, 1D2^{1}D_{2} and 3F2^{3}F_{2} initial partial waves.Comment: 7 pages, 9 figure

    Pomeron in diffractive processes γ(Q2)pρ0p\gamma^*(Q^2)p\to\rho^0 p and γ(Q2)pγ(Q2)p\gamma^*(Q^2)p\to\gamma^*(Q^2) p at large Q^2: the onset of pQCD

    Full text link
    We study the reactions γ(Q2)pρ0p\gamma^*(Q^2)p\to\rho^0 p and γ(Q2)pγ(Q2)p\gamma^*(Q^2)p\to\gamma^*(Q^2) p at large Q^2 and W2/Q2W^2/Q^2 and small momentum transfer, κ2\kappa^2_\perp, to the nucleon where the pomeron exchange dominates. At large Q^2 the virtual photon selects a hard qqˉq\bar q pair, thus selecting the hard pomeron component (the BFKL pomeron). The amplitudes for both transverse and longitudinal polarizations of the initial photon and outgoing ρ\rho-meson (photon) are calculated in the framework of the BFKL pomeron exchange. Our calculations show that one cannot expect the early onset of the pure perturbative regime in the discussed diffractive processes: the small interquark distances, ρqqˉ<0.2\rho_{q\bar q} <0.2 fm, start to dominate not earlier than at Q2100GeV2,W2/Q2107Q^2 \simeq 100 GeV^2, W^2/Q^2 \simeq 10^7 in γ(Q2)pρ0p\gamma^*(Q^2)p\to\rho^0 p and Q250GeV2,W2/Q2106Q^2 \simeq 50 GeV^2, W^2/Q^2 \simeq 10^6 in γ(Q2)pγ(Q2)p\gamma^*(Q^2)p\to\gamma^*(Q^2) p.Comment: 20 pages, LaTeX, epsfig.st

    Charmed quark component of the photon wave function

    Full text link
    We determine the c-anti-c component of the photon wave function on the basis of (i) the data on the transitions e+ e- -> J/psi(3096), psi(3686), psi(4040), psi(4415), (ii) partial widths of the two-photon decays eta_{c0}(2979), chi_{c0}(3415), chi_{c2}(3556) -> gamma-gamma, and (iii) wave functions of the charmonium states obtained by solving the Bethe-Salpeter equation for the c-anti-c system. Using the obtained c-anti-c component of the photon wave function we calculate the gamma-gamma decay partial widths for radial excitation 2S state, eta_{c0}(3594) -> gamma-gamma, and 2P states chi_{c0}(3849), chi_{c2}(3950) -> gamma-gamma.Comment: 20 pages, 8 figure
    corecore