47 research outputs found

    Comparison of baseline and low-dose dobutamine technetium-99m sestamibi scintigraphy with low-dose dobutamine echocardiography for predicting functional recovery after revascularization.

    Get PDF

    Effect of Probiotic Administration on Serum Tryptophan Metabolites in Pediatric Type 1 Diabetes Patients

    Get PDF
    Type 1 diabetes (T1D) is characterized by anomalous functioning of the immuno regulatory, tryptophan-catabolic enzyme indoleamine 2,3 dioxygenase 1 (IDO1). In T1D, the levels of kynurenine—the first byproduct of tryptophan degradation via IDO1—are significantly lower than in nondiabetic controls, such that defective immune regulation by IDO1 has been recognized as potentially contributing to autoimmunity in T1D. Because tryptophan catabolism—and the production of immune regulatory catabolites—also occurs via the gut microbiota, we measured serum levels of tryptophan, and metabolites thereof, in pediatric, diabetic patients after a 3-month oral course of Lactobacillus rhamnosus GG. Daily administration of the probiotic significantly affected circulating levels of tryptophan as well as the qualitative pattern of metabolite formation in the diabetic patients, while it decreased inflammatory cytokine production by the patients. This study suggests for the first time that a probiotic treatment may affect systemic tryptophan metabolism and restrain proinflammatory profile in pediatric T1D

    Identification of a 2-propanol analogue modulating the non-enzymatic function of indoleamine 2,3-dioxygenase 1

    Get PDF
    Abstract Indoleamine 2,3 dioxygenase 1 (IDO1) is a metabolic enzyme that catalyzes the conversion of the essential amino acid tryptophan (Trp) into a series of immunoactive catabolites, collectively known as kynurenines. Through the depletion of Trp and the generation of kynurenines, IDO1 represents a key regulator of the immune responses involved in physiologic homeostasis as well as in neoplastic and autoimmune pathologies. The IDO1 enzyme has been described as an important immune checkpoint to be targeted by catalytic inhibitors in the treatment of cancer. In contrast, a defective expression/activity of the enzyme has been demonstrated in autoimmune diseases. Beside its catalytic activity, the IDO1 protein is endowed with an additional function associated with the presence of two immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which, once phosphorylated, bind SHP phosphatases and mediate a long-term immunoregulatory activity of IDO1. Herein, we report the screening of a focused library of molecules bearing a propanol core by a protocol combining microscale thermophoresis (MST) analysis and a cellular assay. As a result, the combined screening identified a 2-propanolol analogue, VIS351, as the first potent activator of the ITIM-mediated function of the IDO1 enzyme. VIS351 displayed a good dissociation constant (Kd = 1.90 μM) for IDO1 and a moderate cellular inhibitor activity (IC50 = 11.463 μM), although it did not show any catalytic inhibition of the recombinant IDO1 enzyme. Because we previously demonstrated that the enzymatic and non-enzymatic (i.e., ITIM-mediated) functions of IDO1 reside in different conformations of the protein, we hypothesized that in the cellular system VIS351 may shift the dynamic conformational balance towards the ITIM-favoring folding of IDO1, resulting in the activation of the signaling rather than catalytic activity of IDO1. We demonstrated that VIS351 activated the ITIM-mediated signaling of IDO1 also in mouse plasmacytoid dendritic cells, conferring those cells an immunosuppressive phenotype detectable in vivo. Thus the manuscript describes for the first time a small molecule as a positive modulator of IDO1 signaling function, paving the basis for an innovative approach to develop first-in-class drugs acting on the IDO1 target

    Novel mutations in the WFS1 gene are associated with Wolfram syndrome and systemic inflammation

    Get PDF
    Mutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress and are associated with a rare autosomal-recessive disorder known as Wolfram syndrome (WS). WS is clinically characterized by childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus and neurological signs. We identified two novel WFS1 mutations in a patient with WS, namely, c.316-1G > A (in intron 3) and c.757A > T (in exon 7). Both mutations, located in the N-terminal region of the protein, were predicted to generate a truncated and inactive form of WFS1. We found that although the WFS1 protein was not expressed in peripheral blood mononuclear cells (PBMCs) of the proband, no constitutive ER stress activation could be detected in those cells. In contrast, WS proband's PBMCs produced very high levels of proinflammatory cytokines (i.e. TNF-α, IL-1β, and IL-6) in the absence of any stimulus. WFS1 silencing in PBMCs from control subjects by means of small RNA interference also induced a pronounced proinflammatory cytokine profile. The same cytokines were also significantly higher in sera from the WS patient as compared to matched healthy controls. Moreover, the chronic inflammatory state was associated with a dominance of proinflammatory T helper 17 (Th17)-type cells over regulatory T (Treg) lymphocytes in the WS PBMCs. The identification of a state of systemic chronic inflammation associated with WFS1 deficiency may pave the way to innovative and personalized therapeutic interventions in WS

    Engagement of nuclear coactivator 7 by 3-hydroxyanthranilic acid enhances activation of aryl hydrocarbon receptor in immunoregulatory dendritic cells

    Get PDF
    Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first step in the kynurenine pathway of tryptophan (Trp) degradation that produces several biologically active Trp metabolites. L-kynurenine (Kyn), the first byproduct by IDO1, promotes immunoregulatory effects via activation of the Aryl hydrocarbon Receptor (AhR) in dendritic cells (DCs) and T lymphocytes. We here identified the nuclear coactivator 7 (NCOA7) as a molecular target of 3-hydroxyanthranilic acid (3-HAA), a Trp metabolite produced downstream of Kyn along the kynurenine pathway. In cells overexpressing NCOA7 and AhR, the presence of 3-HAA increased the association of the two molecules and enhanced Kyn-driven, AhR-dependent gene transcription. Physiologically, conventional (cDCs) but not plasmacytoid DCs or other immune cells expressed high levels of NCOA7. In cocultures of CD4+ T cells with cDCs, the co-addition of Kyn and 3-HAA significantly increased the induction of Foxp3+ regulatory T cells and the production of immunosuppressive transforming growth factor β in an NCOA7-dependent fashion. Thus, the co-presence of NCOA7 and the Trp metabolite 3-HAA can selectively enhance the activation of ubiquitary AhR in cDCs and consequent immunoregulatory effects. Because NCOA7 is often overexpressed and/or mutated in tumor microenvironments, our current data may provide evidence for a new immune check-point mechanism based on Trp metabolism and AhR

    Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in juvenile diabetes

    Get PDF
    A defect in indoleamine 2,3-dioxygenase 1 (IDO1), which is responsible for immunoregulatory tryptophan catabolism, impairs development of immune tolerance to autoantigens in NOD mice, a model for human autoimmune type 1 diabetes (T1D). Whether IDO1 function is also defective in T1D is still unknown. We investigated IDO1 function in sera and peripheral blood mononuclear cells (PBMCs) from children with T1D and matched controls. These children were further included in a discovery study to identify SNPs in IDO1 that might modify the risk of T1D. T1D in children was characterized by a remarkable defect in IDO1 function. A common haplotype, associated with dysfunctional IDO1, increased the risk of developing T1D in the discovery and also confirmation studies. In T1D patients sharing such a common IDO1 haplotype, incubation of PBMCs in vitro with tocilizumab (TCZ) - an IL-6 receptor blocker - would, however, rescue IDO1 activity. In an experimental setting with diabetic NOD mice, TCZ was found to restore normoglycemia via IDO1-dependent mechanisms. Thus, functional SNPs of IDO1 are associated with defective tryptophan catabolism in human T1D, and maneuvers aimed at restoring IDO1 function would be therapeutically effective in at least a subgroup of T1D pediatric patients.The authors wish to thank patients and subjects who participated in this study, as well as nurses and staff of the Pediatric Clinic of S. Maria della Misericordia Hospital (Perugia), Juvenile Diabetes Center-Anna Meyer Children's Hospital (Florence), Unit of Endocrinology and Diabetes-'Bambino Gesu' Children's Hospital (Rome), Hopital Necker-Enfants Malades (Paris), and Diabetes and Metabolism Service-University Hospital Centre of Coimbra (Coimbra). The authors wish also to thank Roberto Gerli for the gift of TCZ, Giovanni Ricci for histologies, and Francisco Carrilho and Eduarda Coutinho for providing and processing, respectively, DNA samples from the Portuguese cohorts. This work was supported by the European Research Council (338954-DIDO to UG) and, in part, by Associazione per l'Aiuto ai Giovani con Diabete Italia e dell'Umbria (to UG) and the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013 to AC) and the Fundacao para a Ciencia e Tecnologia (contracts IF/00735/2014 to AC, and SFRH/BPD/96176/2013 to CC).info:eu-repo/semantics/publishedVersio

    Wolfram syndrome, a rare neurodegenerative disease: From pathogenesis to future treatment perspectives

    No full text
    Background: Wolfram syndrome (WS), a rare genetic disorder, is considered the best prototype of endoplasmic reticulum (ER) diseases. Classical WS features are childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus, neurological signs, and other abnormalities. Two causative genes (WFS1 and WFS2) have been identified. The transmission of the disease takes place in an autosomal recessive mode but autosomal dominant mutations responsible for WS-related disorders have been described. Prognosis is poor, death occurs at the median age of 39 years with a major cause represented by respiratory failure as a consequence of brain stem atrophy and neurodegeneration. The aim of this narrative review is to focus on etiology, pathogenesis and natural history of WS for an adequate patient management and for the discussion of future therapeutic interventions. Main body: WS requires a multidisciplinary approach in order to be successfully treated. A prompt diagnosis decreases morbidity and mortality through prevention and treatment of complications. Being a monogenic pathology, WS represents a perfect model to study the mechanisms of ER stress and how this condition leads to cell death, in comparison with other prevalent diseases in which multiple factors interact to produce the disease manifestations. WS is also an important disease prototype to identify drugs and molecules associated with ER homeostasis. Evidence indicates that specific metabolic diseases (type 1 and type 2 diabetes), neurodegenerative diseases, atherosclerosis, inflammatory pathologies and also cancer are closely related to ER dysfunction. Conclusions: Therapeutic strategies in WS are based on drug repurposing (i.e., investigation of approved drugs for novel therapeutic indications) with the aim to stop the progression of the disease by reducing the endoplasmic reticulum stress. An extensive understanding of WS from pathophysiology to therapy is fundamental and more studies are necessary to better manage this devastating disease and guarantee the patients a better quality of life and longer life expectancy

    Complete brachial artery injury after open elbow dislocation: A case report

    No full text
    Elbow dislocation is a frequent event however, despite the anatomic proximity of the periarticular neurovascular structures to the joint, vascular injuries after dislocation are extremely rare. Their clinical presentation can be subtle and the diagnosis is often delayed. In the event of a vascular injury, after dislocation, reduction, and joint stabilization are performed, a prompt arterial injury repair using adequate surgical techniques must take place to avoid serious consequences to the upper limb. Herein we present a case of complete injury of the brachial artery after open elbow dislocation repaired by end-to-end suture. © EuroMediterranean Biomedical Journal 2019
    corecore