1,170 research outputs found

    Measurement of bunch length and temporal distribution using accelerating radio frequency cavity in low emittance injector

    Get PDF
    We demonstrate an experimental methodology for measuring the temporal distribution of pico second level electron bunch with low energy using radial electric and azimuthal magnetic fields of an accelerating TM01 mode radio frequency RF cavity that is used for accelerating electron beams in a linear accelerator. In this new technique, an accelerating RF cavity provides a phase dependent transverse kick to the electrons, resulting in the linear coupling of the trajectory angle with the longitudinal position inside the bunch. This method does not require additional devices on the beamline since it uses an existing accelerating cavity for the projection of the temporal distribution to the transverse direction. We present the theoretical basis of the proposed method and validate it experimentally in the compact energy recovery linac accelerator at KEK. Measurements were demonstrated using a 2 cell superconducting booster cavity with a peak on axis accelerating field E0 of 7.21 MV

    Non-invasive biophysical measurement of travelling waves in the insect inner ear

    Get PDF
    Frequency analysis in the mammalian cochlea depends on the propagation of frequency information in the form of a travelling wave (TW) across tonotopically arranged auditory sensilla. TWs have been directly observed in the basilar papilla of birds and the ears of bush-crickets (Insecta: Orthoptera) and have also been indirectly inferred in the hearing organs of some reptiles and frogs. Existing experimental approaches to measure TW function in tetrapods and bushcrickets are inherently invasive, compromising the fine-scale mechanics of each system. Located in the forelegs, the bushcricket ear exhibits outer, middle and inner components; the inner ear containing tonotopically arranged auditory sensilla within a fluid-filled cavity, and externally protected by the leg cuticle. Here, we report bush-crickets with transparent ear cuticles as potential model species for direct, non-invasive measuring of TWs and tonotopy. Using laser Doppler vibrometry and spectroscopy, we show that increased transmittance of light through the ear cuticle allows for effective non-invasive measurements of TWs and frequency mapping. More transparent cuticles allow several properties of TWs to be precisely recovered and measured in vivo from intact specimens. Our approach provides an innovative, noninvasive alternative to measure the natural motion of the sensillia-bearing surface embedded in the intact inner ear fluid

    Theory of optical spectra of polar quantum wells: Temperature effects

    Full text link
    Theoretical and numerical calculations of the optical absorption spectra of excitons interacting with longitudinal-optical phonons in quasi-2D polar semiconductors are presented. In II-VI semiconductor quantum wells, exciton binding energy can be tuned on- and off-resonance with the longitudinal-optical phonon energy by varying the quantum well width. A comprehensive picture of this tunning effect on the temperature-dependent exciton absorption spectrum is derived, using the exciton Green's function formalism at finite temperature. The effective exciton-phonon interaction is included in the Bethe-Salpeter equation. Numerical results are illustrated for ZnSe-based quantum wells. At low temperatures, both a single exciton peak as well as a continuum resonance state are found in the optical absorption spectra. By contrast, at high enough temperatures, a splitting of the exciton line due to the real phonon absorption processes is predicted. Possible previous experimental observations of this splitting are discussed.Comment: 10 pages, 9 figures, to appear in Phys. Rev. B. Permanent address: [email protected]

    A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Get PDF
    Liver progenitor cells (LPCs) can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC), indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL), and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver

    High sensitivity GEM experiment on double beta decay of 76-Ge

    Full text link
    The GEM project is designed for the next generation 2 beta decay experiments with 76-Ge. One ton of ''naked'' HP Ge detectors (natural at the first GEM-I phase and enriched in 76-Ge to 86% at the second GEM-II stage) are operating in super-high purity liquid nitrogen contained in the Cu vacuum cryostat (sphere with diameter 5 m). The latest is placed in the water shield. Monte Carlo simulation evidently shows that sensitivity of the experiment (in terms of the T1/2 limit for neutrinoless 2 beta decay) is 10^27 yr with natural HP Ge crystals and 10^28 yr with enriched ones. These bounds corresponds to the restrictions on the neutrino mass less than 0.05 eV and 0.015 eV with natural and enriched detectors, respectively. Besides, the GEM-I set up could advance the current best limits on the existence of neutralinos - as dark matter candidates - by three order of magnitudes, and at the same time would be able to identify unambiguously the dark matter signal by detection of its seasonal modulation.Comment: LaTeX, 20 pages, 4 figure

    A study of prognostic factors in Chinese patients with diabetic foot ulcers

    Get PDF
    Objective: Few studies have identified factors as predictors of clinical prognosis of patients with diabetic foot ulcers (DFUs), especially of Chinese patients. In this study, we assessed the prognostic factors of Chinese patients with DFUs. Methods and materials: This was a retrospective study (January 2009–January 2011) of 194 DFUs conducted in an inpatient population at PLA 454 Hospital in Nanjing, China, to determine the prognostic influential factors of DFUs in Chinese patients. All of the studied patients were grouped into an amputation group, a non-healing group, and a cured group, according to the clinical prognosis. Patient parameters, including gender, age, smoking habits, education level, family history of diabetes mellitus, medical history, duration of foot lesions and complications, ankle-brachial index (ABI), transcutaneous oxygen pressure (TcPO2), urinary albumin/creatinine ratio (Alb/Cr), fundus oculi, electrocardiogram, DFU characteristics, bacterial nature, and neuropathy, were cross-studied among the three groups. Results: Compared with the other two groups, the amputation group showed a higher number of males, older in age, lower ABI and TcPO2 levels, higher Wagner wound grading and size, and significantly higher urinary Alb/Cr ratio, blood urea nitrogen, serum creatinine, white blood cell count, and erythrocyte sedimentation rate. Compared to the cured group (162 patients), more patients with an older age, smoking, family history of diabetes mellitus, medical history of foot ulcerations, lower ABI and TcPO2 levels, higher urine Alb/Cr ratio, and serum creatinine were found in the non-healing group. Regression analysis was used to study the correlation between various factors and clinical prognosis, and the results were as follows: age, Wagner wound classification, and heel ulcerations were negatively correlated to the DFU prognosis, whereas the female population, ABI, and TcPO2 were positively correlated with DFU prognosis. Conclusion: In this retrospective study, we conclude that the DFU prognosis may be related to age, gender, wound location (heel), Wagner wound classification, ABI, and TcPO2 levels in the Chinese population

    Absorption of Scintillation Light in a 100 \ell Liquid Xenonγ\gamma Ray Detector and Expected Detector Performance

    Full text link
    An 800L liquid xenon scintillation γ\gamma ray detector is being developed for the MEG experiment which will search for μ+e+γ\mu^+\to\mathrm{e}^+\gamma decay at the Paul Scherrer Institut. Absorption of scintillation light of xenon by impurities might possibly limit the performance of such a detector. We used a 100L prototype with an active volume of 372x372x496 mm3^3 to study the scintillation light absorption. We have developed a method to evaluate the light absorption, separately from elastic scattering of light, by measuring cosmic rays and α\alpha sources. By using a suitable purification technique, an absorption length longer than 100 cm has been achieved. The effects of the light absorption on the energy resolution are estimated by Monte Carlo simulation.Comment: 18 pages, 10 figures (eps). Submitted to Nucl. Instr. and Meth.

    Binding Energy of Charged Excitons in ZnSe-based Quantum Wells

    Full text link
    Excitons and charged excitons (trions) are investigated in ZnSe-based quantum well structures with (Zn,Be,Mg)Se and (Zn,Mg)(S,Se) barriers by means of magneto-optical spectroscopy. Binding energies of negatively () and positively (X+) charged excitons are measured as functions of quantum well width, free carrier density and in external magnetic fields up to 47 T. The binding energy of shows a strong increase from 1.4 to 8.9 meV with decreasing quantum well width from 190 to 29 A. The binding energies of X+ are about 25% smaller than the binding energy in the same structures. The magnetic field behavior of and X+ binding energies differ qualitatively. With growing magnetic field strength, increases its binding energy by 35-150%, while for X+ it decreases by 25%. Zeeman spin splittings and oscillator strengths of excitons and trions are measured and discussed
    corecore