95 research outputs found

    Algorithm and performance of a clinical IMRT beam-angle optimization system

    Full text link
    This paper describes the algorithm and examines the performance of an IMRT beam-angle optimization (BAO) system. In this algorithm successive sets of beam angles are selected from a set of predefined directions using a fast simulated annealing (FSA) algorithm. An IMRT beam-profile optimization is performed on each generated set of beams. The IMRT optimization is accelerated by using a fast dose calculation method that utilizes a precomputed dose kernel. A compact kernel is constructed for each of the predefined beams prior to starting the FSA algorithm. The IMRT optimizations during the BAO are then performed using these kernels in a fast dose calculation engine. This technique allows the IMRT optimization to be performed more than two orders of magnitude faster than a similar optimization that uses a convolution dose calculation engine.Comment: Final version that appeared in Phys. Med. Biol. 48 (2003) 3191-3212. Original EPS figures have been converted to PNG files due to size limi

    Constraints on Variant Axion Models

    Get PDF
    A particular class of variant axion models with two higgs doublets and a singlet is studied. In these models the axion couples either to the uu-quark or tt-quark or both, but not to bb, cc, ss, or dd. When the axion couples to only one quark the models possess the desirable feature of having no domain wall problem, which makes them viable candidates for a cosmological axion string scenario. We calculate the axion couplings to leptons, photons and nucleons, and the astrophysical constraints on the axion decay constant vav_a are investigated and compared to the DFSZ axion model. We find that the most restrictive lower bound on vav_a, that from SN1987a, is lowered by up to a factor of about 30, depending on the model and also the ratio of the vacuum expectation values of the higgs doublets. For scenarios with axionic strings, the allowed window for vav_a in the uu quark model can be more than two orders of magnitude. For inflationary scenarios, the cosmological upper bound on va/Nv_a/N, where NN is the QCD anomaly factor, is unaffected: however, the variant models have NN either 3 or 6 times smaller than the DFSZ model.Comment: 21pp RevTeX, 1 eps fig, uses graphics style, typo corrected, and corrected file sent this time. To appear in Physical Review

    Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)

    Full text link
    The CLEO Collaboration has observed the first hadronic transition among bottomonium (b bbar) states other than the dipion transitions among vector states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays, we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at High Energies, August 2003, Fermila

    Verifying 4D gated radiotherapy using time-integrated electronic portal imaging: a phantom and clinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiration-gated radiotherapy (RGRT) can decrease treatment toxicity by allowing for smaller treatment volumes for mobile tumors. RGRT is commonly performed using external surrogates of tumor motion. We describe the use of time-integrated electronic portal imaging (TI-EPI) to verify the position of internal structures during RGRT delivery</p> <p>Methods</p> <p>TI-EPI portals were generated by continuously collecting exit dose data (aSi500 EPID, Portal vision, Varian Medical Systems) when a respiratory motion phantom was irradiated during expiration, inspiration and free breathing phases. RGRT was delivered using the Varian RPM system, and grey value profile plots over a fixed trajectory were used to study object positions. Time-related positional information was derived by subtracting grey values from TI-EPI portals sharing the pixel matrix. TI-EPI portals were also collected in 2 patients undergoing RPM-triggered RGRT for a lung and hepatic tumor (with fiducial markers), and corresponding planning 4-dimensional CT (4DCT) scans were analyzed for motion amplitude.</p> <p>Results</p> <p>Integral grey values of phantom TI-EPI portals correlated well with mean object position in all respiratory phases. Cranio-caudal motion of internal structures ranged from 17.5–20.0 mm on planning 4DCT scans. TI-EPI of bronchial images reproduced with a mean value of 5.3 mm (1 SD 3.0 mm) located cranial to planned position. Mean hepatic fiducial markers reproduced with 3.2 mm (SD 2.2 mm) caudal to planned position. After bony alignment to exclude set-up errors, mean displacement in the two structures was 2.8 mm and 1.4 mm, respectively, and corresponding reproducibility in anatomy improved to 1.6 mm (1 SD).</p> <p>Conclusion</p> <p>TI-EPI appears to be a promising method for verifying delivery of RGRT. The RPM system was a good indirect surrogate of internal anatomy, but use of TI-EPI allowed for a direct link between anatomy and breathing patterns.</p
    • …
    corecore