17,614 research outputs found

    Optimizing Hartree-Fock orbitals by the density-matrix renormalization group

    Full text link
    We have proposed a density-matrix renormalization group (DMRG) scheme to optimize the one-electron basis states of molecules. It improves significantly the accuracy and efficiency of the DMRG in the study of quantum chemistry or other many-fermion system with nonlocal interactions. For a water molecule, we find that the ground state energy obtained by the DMRG with only 61 optimized orbitals already reaches the accuracy of best quantum Monte Carlo calculation with 92 orbitals.Comment: published version, 4 pages, 4 figure

    Superconductivity mediated by the antiferromagnetic spin-wave in chalcogenide iron-base superconductors

    Full text link
    The ground state of K0.8+x_{0.8+x}Fe1.6+y_{1.6+y}Se2_2 and other iron-based selenide superconductors are doped antiferromagnetic semiconductors. There are well defined iron local moments whose energies are separated from those of conduction electrons by a large band gap in these materials. We propose that the low energy physics of this system is governed by a model Hamiltonian of interacting electrons with on-site ferromagnetic exchange interactions and inter-site superexchange interactions. We have derived the effective pairing potential of electrons under the linear spin-wave approximation and shown that the superconductivity can be driven by mediating coherent spin wave excitations in these materials. Our work provides a natural account for the coexistence of superconducting and antiferromagnetic long range orders observed by neutron scattering and other experiments.Comment: 4 pages, 3 figure

    On the Vertex Operators of the Elliptic Quantum Algebra Uq,p(sl2^)kU_{q,p}(\widehat{sl_2})_{k}}

    Full text link
    A realization of the elliptic quantum algebra Uq,p(sl2^)U_{q,p}(\widehat{sl_2}) for any given level kk is constructed in terms of three free boson fields and their accompanying twisted partners. It can be viewed as the elliptic deformation of Wakimoto realization. Two screening currents are constructed; they commute or anti-commute with Uq,p(sl2^)U_{q,p}(\widehat{sl_2}) modulo total q-differences. The free fields realization for two types vertex operators nominated as the type II and the type IIII vertex operators are presented. The twisted version of the two types vertex operators are also obtained. They all play crucial roles in calculating correlation functions.Comment: 23 page

    String order and hidden topological symmetry in the SO(2n+1) symmetric matrix product states

    Full text link
    We have introduced a class of exactly soluble Hamiltonian with either SO(2n+1) or SU(2) symmetry, whose ground states are the SO(2n+1) symmetric matrix product states. The hidden topological order in these states can be fully identified and characterized by a set of nonlocal string order parameters. The Hamiltonian possesses a hidden (Z2×Z2)n(Z_{2}\times Z_{2})^{n} topological symmetry. The breaking of this hidden symmetry leads to 4n4^{n} degenerate ground states with disentangled edge states in an open chain system. Such matrix product states can be regarded as cluster states, applicable to measurement-based quantum computation.Comment: 5 pages, 1 figur

    Entanglement-enhanced measurement of a completely unknown phase

    Full text link
    The high-precision interferometric measurement of an unknown phase is the basis for metrology in many areas of science and technology. Quantum entanglement provides an increase in sensitivity, but present techniques have only surpassed the limits of classical interferometry for the measurement of small variations about a known phase. Here we introduce a technique that combines entangled states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining more information per photon that is possible classically. We use the technique to make the first ab initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise determination of unknown phase shifts using interferometry.Comment: 6 pages, 4 figure

    Effect of Iodine Doping on Bi2_{2}Sr2_{2}Ca1_{1}Cu2_{2}Ox_{x}: Charge Transfer or Interlayer Coupling?

    Full text link
    A comparative study has been made of iodine-intercalated Bi2_{2}Sr2_{2}Ca1_{1}Cu2_{2}Ox_{x} single crystal and 1 atm O2_{2} annealed Bi2_{2}Sr2_{2}Ca1_{1}Cu1_{1}Ox_{x} single crystal using AC susceptibility measurement, X-ray photoemission (XPS) and angle-resolved ultraviolet photoemission spectroscopy (ARUPS). AC susceptibility measurement indicates that O2_{2}-doped samples studied have Tc_{c} of 84 o^{o}K, whereas Tc_{c} of Iodine-doped samples studied are 80 o^{o}K. XPS Cu 2p core level data establish that the hole concentration in the CuO2_{2} planes are essentially the same for these two kinds of samples. ARUPS measurements show that electronic structure of the normal states near the Fermi level has been strongly affected by iodine intercalation. We conclude that the dominant effect of iodine doping is to alter the interlayer coupling.Comment: LBL 9 pages, APS_Revtex. 5 Figures, available upon request. UW-Madison preprin
    • …
    corecore