2,270 research outputs found

    Gravitational potential of a homogeneous circular torus: new approach

    Full text link
    The integral expression for gravitational potential of a homogeneous circular torus composed of infinitely thin rings is obtained. Approximate expressions for torus potential in the outer and inner regions are found. In the outer region a torus potential is shown to be approximately equal to that of an infinitely thin ring of the same mass; it is valid up to the surface of the torus. It is shown in a first approximation, that the inner potential of the torus (inside a torus body) is a quadratic function of coordinates. The method of sewing together the inner and outer potentials is proposed. This method provided a continuous approximate solution for the potential and its derivatives, working throughout the region.Comment: 10 pages, 9 figures, 1 table; some misprints in formulae were correcte

    Influence of Collision Cascade Statistics on Pattern Formation of Ion-Sputtered Surfaces

    Get PDF
    Theoretical continuum models that describe the formation of patterns on surfaces of targets undergoing ion-beam sputtering, are based on Sigmund's formula, which describes the spatial distribution of the energy deposited by the ion. For small angles of incidence and amorphous or polycrystalline materials, this description seems to be suitable, and leads to the classic BH morphological theory [R.M. Bradley and J.M.E. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988)]. Here we study the sputtering of Cu crystals by means of numerical simulations under the binary-collision approximation. We observe significant deviations from Sigmund's energy distribution. In particular, the distribution that best fits our simulations has a minimum near the position where the ion penetrates the surface, and the decay of energy deposition with distance to ion trajectory is exponential rather than Gaussian. We provide a modified continuum theory which takes these effects into account and explores the implications of the modified energy distribution for the surface morphology. In marked contrast with BH's theory, the dependence of the sputtering yield with the angle of incidence is non-monotonous, with a maximum for non-grazing incidence angles.Comment: 12 pages, 13 figures, RevTe

    Independent determination of the two gaps by directional point-contact spectroscopy in MgB_2 single crystals

    Full text link
    Directional point-contact spectroscopy measurements were performed for the first time in state-of-the-art MgB_2 single crystals. The selective suppression of the superconductivity in the "pi" band by means of a suitable magnetic field allowed separating the partial contribution of each band to the total point-contact conductance. By fitting the partial conductance curves sigma_sigma(V) and sigma_pi(V), we got an independent determination of the two gaps, Delta_sigma and Delta_pi, with a strong reduction of the experimental uncertainty. Their temperature dependence was found to agree well with the predictions of the two-band models for MgB_2.Comment: 6 pages, 4 eps figures. References added, abstract rewritten, text slightly changed. Proceedings of the BOROMAG Conference, June 17-19, Genoa, Ital

    Quasiparticle Density of States of Clean and Dirty s-Wave Superconductors in the Vortex State

    Full text link
    The quasiparticle density of states (DOS) in the vortex state has been probed by specific heat measurements under magnetic fields (H) for clean and dirty s-wave superconductors, Y(Ni1-xPtx)2B2C and Nb1-xTaxSe2. We find that the quasiparticle DOS per vortex is appreciably H-dependent in the clean-limit superconductors, while it is H-independent in the dirty superconductors as expected from a conventional rigid normal electron core picture. We discuss possible origins for our observations in terms of the shrinking of the vortex core radius with increasing H.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jpn. Vol. 68 No.

    Infrared and optical properties of pure and cobalt-doped LuNi_2B_2C

    Full text link
    We present optical conductivity data for Lu(Ni1−x_{1-x}Cox_x)2_2B2_2C over a wide range of frequencies and temperatures for x=0 and x=0.09. Both materials show evidence of being good Drude metals with the infrared data in reasonable agreement with dc resistivity measurements at low frequencies. An absorption threshold is seen at approximately 700 cm-1. In the cobalt-doped material we see a superconducting gap in the conductivity spectrum with an absorption onset at 24 +/- 2 cm-1 = 3.9$ +/- 0.4 k_BT_c suggestive of weak to moderately strong coupling. The pure material is in the clean limit and no gap can be seen. We discuss the data in terms of the electron-phonon interaction and find that it can be fit below 600 cm-1 with a plasma frequency of 3.3 eV and an electron-phonon coupling constant lambda_{tr}=0.33 using an alpha^{2}F(omega) spectrum fit to the resistivity.Comment: 10 pages with 10 embedded figures, submitted to PR

    Equilibrium basal-plane magnetization of superconductive YNi(2)B(2)C - the influence of non-local electrodynamics

    Full text link
    For a single crystal of YNi(2)B(2)C superconductor, the equilibrium magnetization M in the square basal plane has been studied experimentally as a function of temperature and magnetic field. While the magnetization M(H) deviates from conventional London predictions, a recent extension of London theory (to include effects of non-local electrodynamics) describes the experiments accurately. The resulting superconductive parameters are well behaved. These results are compared with corresponding findings for the case with M perpendicular to the basal plane.Comment: 7 pages, 5 Postscript Figures, 2 table

    Theory of the Optical Conductivity in the Cuprate Superconductors

    Full text link
    We present a study of the normal state optical conductivity in the cuprate superconductors using the nearly antiferromagnetic Fermi liquid (NAFL) description of the magnetic interaction between their planar quasiparticles. We find that the highly anisotropic scattering rate in different regions of the Brillouin zone, both as a function of frequency and temperature, a benchmark of NAFL theory, leads to an average relaxation rate of the Marginal Fermi Liquid form for overdoped and optimally doped systems, as well as for underdoped systems at high temperatures. We carry out numerical calculations of the optical conductivity for several compounds for which the input spin fluctuation parameters are known. Our results, which are in agreement with experiment on both overdoped and optimally doped systems, show that NAFL theory explains the anomalous optical behavior found in these cuprate superconductors.Comment: REVTEX file, 8 PostScript figure
    • …
    corecore