67 research outputs found

    Competitive binding of STATs to receptor phospho-Tyr motifs accounts for altered cytokine responses

    Get PDF
    Cytokines elicit pleiotropic and non-redundant activities despite strong overlap in their usage of receptors, JAKs and STATs molecules. We use IL-6 and IL-27 to ask how two cytokines activating the same signaling pathway have different biological roles. We found that IL-27 induces more sustained STAT1 phosphorylation than IL-6, with the two cytokines inducing comparable levels of STAT3 phosphorylation. Mathematical and statistical modeling of IL-6 and IL-27 signaling identified STAT3 binding to GP130, and STAT1 binding to IL-27Rα, as the main dynamical processes contributing to sustained pSTAT1 levels by IL-27. Mutation of Tyr613 on IL-27Rα decreased IL-27-induced STAT1 phosphorylation by 80% but had limited effect on STAT3 phosphorgylation. Strong receptor/STAT coupling by IL-27 initiated a unique gene expression program, which required sustained STAT1 phosphorylation and IRF1 expression and was enriched in classical Interferon Stimulated Genes. Interestingly, the STAT/receptor coupling exhibited by IL-6/IL-27 was altered in patients with systemic lupus erythematosus (SLE). IL-6/IL-27 induced a more potent STAT1 activation in SLE patients than in healthy controls, which correlated with higher STAT1 expression in these patients. Partial inhibition of JAK activation by sub-saturating doses of Tofacitinib specifically lowered the levels of STAT1 activation by IL-6. Our data show that receptor and STATs concentrations critically contribute to shape cytokine responses and generate functional pleiotropy in health and disease

    Sterile Air For Industrial Fermentations

    No full text

    Biomechanik nach operativ versorgter Femurfraktur

    No full text

    Recognition and manipulation of branched DNA structure by junction-resolving enzymes

    No full text
    The junction-resolving enzymes are a class of nucleases that introduce paired cleavages into four-way DNA junctions. They are important in DNA recombination and repair, and are found throughout nature, from eubacteria and their bacteriophages through to higher eukaryotes and their viruses. These enzymes exhibit structure-selective binding to DNA junctions; although cleavage may be more or less sequence-dependent, binding affinity is purely related to the branched structure of the DNA. Binding and cleavage events can be separated for a number of the enzymes by mutagenesis, and mutant proteins that are defective in cleavage while retaining normal junction-selective binding have been isolated. Critical acidic residues have been identified in several resolving enzymes, suggesting a role in the coordination of metal ions that probably deliver the hydrolytic water molecule. The resolving enzymes all bind to junctions in dimeric form, and the subunits introduce independent cleavages within the lifetime of the enzyme-junction complex to ensure resolution of the four-way junction. In addition to recognising the structure of the junction, recent data from four different junction-resolving enzymes indicate that they also manipulate the global structure. In some cases this results in severe distortion of the folded structure of the junction. Understanding the recognition and manipulation of DNA structure by these enzymes is a fascinating challenge in molecular recognition. (C) 1997 Academic Press Limited.</p

    Predicting embryo presence and viability

    No full text
    Pregnancy establishment, followed by birth of live offspring, is essential to all mammals. The biological processes leading up to pregnancy establishment, maintenance, and birth are complex and dependent on the coordinated timing of a series of events at the molecular, cellular, and physiological level. The ability to ovulate a competent oocyte, which is capable of undergoing fertilization, is only the initial step in achieving a successful pregnancy. Once fertilization has occurred and early embryonic development is initiated, early pregnancy detection is critical to provide proper prenatal care (humans) or appropriate management (domestic livestock). However, the simple presence of an embryo, early in gestation, does not guarantee the birth of a live offspring. Pregnancy loss (embryonic mortality, spontaneous abortions, etc.) has been well documented in all mammals, especially in humans and domestic livestock species, and is a major cause of reproductive loss. It has been estimated that only about 25-30 % of all fertilized oocytes in humans result in birth of a live offspring; however, identifying the embryos that will not survive to parturition has not been an easy task. Therefore, investigators have focused the identification of products in maternal circulation that permit the detection of an embryo and assessment of its well-being. This review will focus on the advances in predicting embryonic presence and viability, in vivo

    Differential Transcript Profiles in Cumulus-Oocyte Complexes Originating from Pre-Ovulatory Follicles of Varied Physiological Maturity in Beef Cows

    No full text
    Small dominant follicle diameter at induced ovulation, but not at spontaneous ovulation, decreased pregnancy rate, fertilization rate, and day seven embryo quality in beef cows. We hypothesized that the physiological status of the follicle at GnRH-induced ovulation has a direct effect on the transcriptome of the Cumulus-Oocyte complex, thereby affecting oocyte competence and subsequent embryo development. The objective of this study was to determine if the transcriptome of oocytes and associated cumulus cells (CC) differed among small (≤11.7 mm) and large follicles (≥12.7 mm) exposed to a GnRH-induced gonadotropin surge and follicles (11.7–14.0 mm) exposed to an endogenous gonadotropin surge (spontaneous follicles). RNA sequencing data, from pools of four oocytes or their corresponding CC, revealed 69, 94, and 83 differentially expressed gene transcripts (DEG) among oocyte pools from small versus large, small versus spontaneous, and large versus spontaneous follicle classifications, respectively. An additional 128, 98, and 80 DEG were identified among small versus large, small versus spontaneous, and large versus spontaneous follicle CC pools, respectively. The biological pathway “oxidative phosphorylation” was significantly enriched with DEG from small versus spontaneous follicle oocyte pools (FDR &lt; 0.01); whereas the glycolytic pathway was significantly enriched with DEG from CC pools obtained from large versus small follicles (FDR &lt; 0.01). These findings collectively suggest that altered carbohydrate metabolism within the Cumulus-Oocyte complex likely contributes to the decreased competency of oocytes from small pre-ovulatory follicles exposed to an exogenous GnRH-induced gonadotropin surge
    • …
    corecore