9,405 research outputs found

    Hard Extended X-ray Source in the IC 443 SNR Resolved by Chandra: A Fast Ejecta Fragment or a New Pulsar Wind Nebula?

    Full text link
    A Chandra observation of the isolated hard X-ray source XMMU J061804.3+222732, located in the region of apparent interaction of the supernova remnant IC 443 with a molecular cloud, resolved the complex structure of the source in a few bright clumps embedded in an extended emission of a ~ 30 arcsec size. The X-ray spectra of the clumps and the extended emission are dominated by a hard power-law component with a photon index of 1.2--1.4. In addition, we see some indications of an optically thin thermal plasma of a ~ 0.3 keV temperature. The observed X-ray morphology and spectra are consistent with those expected for an isolated supernova ejecta fragment interacting with a dense ambient medium. A possible alternative interpretation is a pulsar wind nebula associated with either IC 443 or another SNR, G189.6+3.3.Comment: Accepted for publication in The Astrophysical Journal Letters High resolution Images of Fig.1 are appende

    Polarization of Thermal X-rays from Isolated Neutron Stars

    Get PDF
    Since the opacity of a magnetized plasma depends on polarization of radiation, the radiation emergent from atmospheres of neutron stars with strong magnetic fields is expected to be strongly polarized. The degree of linear polarization, typically ~10-30%, depends on photon energy, effective temperature and magnetic field. The spectrum of polarization is more sensitive to the magnetic field than the spectrum of intensity. Both the degree of polarization and the position angle vary with the neutron star rotation period so that the shape of polarization pulse profiles depends on the orientation of the rotational and magnetic axes. Moreover, as the polarization is substantially modified by the general relativistic effects, observations of polarization of X-ray radiation from isolated neutron stars provide a new method for evaluating the mass-to-radius ratio of these objects, which is particularly important for elucidating the properties of the superdense matter in the neutron star interiors.Comment: 7 figures, to be published in Ap

    Mediation, arbitration and negotiation

    Get PDF
    We compare three common dispute resolution processes { negotiation, mediation, and arbitration { in the framework of Crawford and Sobel (1982). Under negotiation, the two parties engage in (possibly arbitrarily long) face-to-face cheap talk. Under mediation, the parties communicate with a neutral third party who makes a non-binding recommendation. Under arbitration, the two parties commit to conform to the third party recommendation. We characterize and compare the optimal mediation and arbitration procedures. Both mediators and arbitrators should optimally filter information, but mediators should also add noise to it. We find that unmediated negotiation performs as well as mediation if and only if the degree of conflict between the parties is low

    Absorption Features in the X-ray Spectrum of an Ordinary Radio Pulsar

    Full text link
    The vast majority of known non-accreting neutron stars (NSs) are rotation-powered radio and/or gamma-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and non-thermal continuum models, with no spectral lines. Spectral features have, however, been found in a handful of exotic NSs and thought to be a manifestation of their unique traits. Here we report the detection of absorption features in the X-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far.Comment: 18 pages, 4 color figures, 1 Tabl

    X-ray emission from PSR J1809-1917 and its pulsar wind nebula, possibly associated with the TeV gamma-ray source HESS J1809-193

    Full text link
    We detected X-ray emission from the 50-kyr-old pulsar J1809-1917 and resolved its pulsar wind nebula (PWN) with Chandra. The pulsar spectrum fits PL+BB model with the photon index of 1.2 and the BB temperature of 2 MK for n_{H}=0.7\times 10^{22} cm^{-2}. The luminosities are(4\pm 1)\times 10^{31} ergs s^{-1} for the PL component (in the 0.5-8 keV band) and ~1\times 10^{32} ergs s^{-1} for the BB component (bolometric) at a plausible distance of 3.5 kpc. The bright inner PWN component of a 3''\times12'' size is elongated in the north-south direction, with the pulsar close to its south end. This component is immersed in a larger (20''\times40''), similarly elongated outer PWN component of lower surface brightness. The elongated shape of the compact PWN can be explained by the ram pressure confinement of the pulsar wind due to the supersonic motion of the pulsar. The PWN spectrum fits a PL model with photon index of 1.4\pm0.1 and 0.5-8 keV luminosity of 4\times10^{32} ergs s^{-1}. The compact PWN appears to be inside a large-scale (~4'\times4') emission more extended to the south of the pulsar, i.e. in the direction of the alleged pulsar motion. To explain the extended X-ray emission ahead of the moving pulsar, one has to invoke strong intrinsic anisotropy of the pulsar wind or assume that this emission comes from a relic PWN swept by the asymmetrical reverse SNR shock. The pulsar and its PWN are located within the extent of the unidentified TeV source HESS J1809-193 whose brightest part is offset by ~8' to the south of the pulsar, i.e. in the same direction as the large-scale X-ray emission. Although the association between J1809-1917 and HESS J1809-193 is plausible, an alternative source of relativistic electrons powering HESS J1809-193 might be the serendipitously discovered X-ray source CXOU J180940.7-192544.Comment: 13 pages, 10 figures and 3 tables, submitted to ApJ. Version with the high-resolution figures is available at http://www.astro.psu.edu/users/green/J1809/ms_astroph.pd
    corecore