7,289 research outputs found

    Brane cosmology with a van der Waals equation of state

    Full text link
    The evolution of a Universe confined onto a 3-brane embedded in a five-dimensional space-time is investigated where the cosmological fluid on the brane is modeled by the van der Waals equation of state. It is shown that the Universe on the brane evolves in such a manner that three distinct periods concerning its acceleration field are attained: (a) an initial accelerated epoch where the van der Waals fluid behaves like a scalar field with a negative pressure; (b) a past decelerated period which has two contributions, one of them is related to the van der Waals fluid which behaves like a matter field with a positive pressure, whereas the other contribution comes from a term of the Friedmann equation on the brane which is inversely proportional to the scale factor to the fourth power and can be interpreted as a radiation field, and (c) a present accelerated phase due to a cosmological constant on the brane.Comment: 9 pages, 2 figures, to be published in General Relativity and Gravitatio

    A model for a non-minimally coupled scalar field interacting with dark matter

    Full text link
    In this work we investigate the evolution of a Universe consisted of a scalar field, a dark matter field and non-interacting baryonic matter and radiation. The scalar field, which plays the role of dark energy, is non-minimally coupled to space-time curvature, and drives the Universe to a present accelerated expansion. The non-relativistic dark matter field interacts directly with the dark energy and has a pressure which follows from a thermodynamic theory. We show that this model can reproduce the expected behavior of the density parameters, deceleration parameter and luminosity distance.Comment: 3 pages, 4 figures. To appear in Brazilian Journal of Physic

    Irreversible processes and the accelerated-decelerated phases of the Universe

    Full text link
    A model for the Universe is proposed where it is considered as a mixture of scalar and matter fields. The particle production is due to an irreversible transfer of energy from the gravitational field to the matter field and represented by a non-equilibrium pressure. This model can simulate three distinct periods of the Universe: (a) an accelerated epoch where the energy density of the scalar field prevails over the matter field, (b) a past decelerated period where the energy density of the matter field becomes more predominant than the scalar energy density, and (c) a present acceleration phase where the scalar energy density overcomes the energy density of the matter field.Comment: 6 pages, 2 figures, to be published in Brazilian Journal of Physic

    Irreversible Processes in a Universe modelled as a mixture of a Chaplygin gas and radiation

    Full text link
    The evolution of a Universe modelled as a mixture of a Chaplygin gas and radiation is determined by taking into account irreversible processes. This mixture could interpolate periods of a radiation dominated, a matter dominated and a cosmological constant dominated Universe. The results of a Universe modelled by this mixture are compared with the results of a mixture whose constituents are radiation and quintessence. Among other results it is shown that: (a) for both models there exists a period of a past deceleration with a present acceleration; (b) the slope of the acceleration of the Universe modelled as a mixture of a Chaplygin gas with radiation is more pronounced than that modelled as a mixture of quintessence and radiation; (c) the energy density of the Chaplygin gas tends to a constant value at earlier times than the energy density of quintessence does; (d) the energy density of radiation for both mixtures coincide and decay more rapidly than the energy densities of the Chaplygin gas and of quintessence.Comment: 8 pages, 1 figure, to be published in GR
    • …
    corecore