10,241 research outputs found

    A Langevin analysis of fundamental noise limits in Coherent Anti-Stokes Raman Spectroscopy

    Get PDF
    We use a Langevin approach to analyze the quantum noise in Coherent Anti-Stokes Raman Spectroscopy (CARS) in several experimental scenarios: with continuous wave input fields acting simultaneously and with fast sequential pulsed lasers where one field scatters off the coherence generated by other fields; and for interactions within a cavity and in free space. In all the cases, the signal as well as the quantum noise due to spontaneous decay and decoherence in the medium are shown to be described by the same general expression. Our theory in particular shows that for short interaction times, the medium noise is not important and the efficiency is limited only by the intrinsic quantum nature of the photon. We obtain fully analytic results \emph{without} making an adiabatic approximation, the fluctuations of the medium and the fields are self solved consistently.Comment: 12 pages, 1 figur

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende

    Laser theory in manifest Lindblad form

    Full text link
    We discuss the laser theory for a single-mode laser with nonlinear gain. We focus in particular on a micromaser which is pumped with a dilute beam of excited atoms crossing the laser cavity. In the weak-coupling regime, an expansion in the coupling strength is developed that preserves the Lindblad form of the master equation, securing the positivity of the density matrix. This expansion breaks rapidly down above threshold. This can be improved with an alternative approach, not restricted to weak coupling: the Lindblad operators are expanded in orthogonal polynomials adapted to the probability distribution for the atom-laser interaction time. Results for the photon statistics and the laser linewidth illustrate the theory.Comment: 13 pages, 8 figures, to be published in J Phys B (minor revision

    Persistent current noise and electron-electron interactions

    Full text link
    We analyze fluctuations of persistent current (PC) produced by a charged quantum particle moving in a ring and interacting with a dissipative environment formed by diffusive electron gas. We demonstrate that in the presence of interactions such PC fluctuations persist down to zero temperature. In the case of weak interactions and/or sufficiently small values of the ring radius RR PC noise remains coherent and can be tuned by external magnetic flux Ίx\Phi_x piercing the ring. In the opposite limit of strong interactions and/or large values of RR fluctuations in the electronic bath strongly suppress quantum coherence of the particle down to T=0T=0 and induce incoherent Ίx\Phi_x-independent current noise in the ring which persists even at Ίx=0\Phi_x=0 when the average PC is absent.Comment: 12 pages, 8 figure

    Coulomb Interaction and Quantum Transport through a Coherent Scatterer

    Full text link
    An interplay between charge discreteness, coherent scattering and Coulomb interaction yields nontrivial effects in quantum transport. We derive a real time effective action and an equivalent quantum Langevin equation for an arbitrary coherent scatterer and evaluate its current-voltage characteristics in the presence of interactions. Within our model, at large conductances G0G_0 and low TT (but outside the instanton-dominated regime) the interaction correction to G0G_0 saturates and causes conductance suppression by a universal factor which depends only on the type of the conductor.Comment: 4 pages, no figure

    Nonequilibrium phenomena in multiple normal-superconducting tunnel heterostructures

    Full text link
    Using the nonequilibrium theory of superconductivity with the tunnel Hamiltonian, we consider a mesoscopic NISINISIN heterostructure, i.e., a structure consisting of five intermittent normal-metal (N) and superconducting (S) regions separated by insulating tunnel barriers (I). Applying the bias voltage between the outer normal electrodes one can drive the central N island very far from equilibrium. Depending on the resistance ratio of outer and inner tunnel junctions, one can realize either effective electron cooling in the central N island or create highly nonequilibrium energy distributions of electrons in both S and N islands. These distributions exhibit multiple peaks at a distance of integer multiples of the superconducting chemical potential. In the latter case the superconducting gap in the S islands is strongly suppressed as compared to its equilibrium value

    Electron transport and current fluctuations in short coherent conductors

    Full text link
    Employing a real time effective action formalism we analyze electron transport and current fluctuations in comparatively short coherent conductors in the presence of electron-electron interactions. We demonstrate that, while Coulomb interaction tends to suppress electron transport, it may {\it strongly enhance} shot noise in scatterers with highly transparent conducting channels. This effect of excess noise is governed by the Coulomb gap observed in the current-voltage characteristics of such scatterers. We also analyze the frequency dispersion of higher current cumulants and emphasize a direct relation between electron-electron interaction effects and current fluctuations in disordered mesoscopic conductors.Comment: 16 pages, 4 figure

    Parity-Affected Superconductivity in Ultrasmall Metallic Grains

    Full text link
    We investigate the breakdown of BCS superconductivity in {\em ultra}\/small metallic grains as a function of particle size (characterized by the mean spacing dd between discrete electronic eigenstates), and the parity (PP = even/odd) of the number of electrons on the island. Assuming equally spaced levels, we solve the parity-dependent BCS gap equation for the order parameter ΔP(d,T)\Delta_P (d,T). Both the T=0T=0 critical level spacing dc,Pd_{c,P} and the critical temperature Tc,P(d)T_{c,P} (d) at which ΔP=0\Delta_P = 0 are parity dependent, and both are so much smaller in the odd than the even case that these differences should be measurable in current experiments.Comment: 4 pages RevTeX, 1 encapsulated postscript figure, submitted to Physical Review Letter

    Semiclassical kinetic theory of electron spin relaxation in semiconductors

    Full text link
    We develop a semiclassical kinetic theory for electron spin relaxation in semiconductors. Our approach accounts for elastic as well as inelastic scattering and treats Elliott-Yafet and motional-narrowing processes, such as D'yakonov-Perel' and variable g-factor processes, on an equal footing. Focusing on small spin polarizations and small momentum transfer scattering, we derive, starting from the full quantum kinetic equations, a Fokker-Planck equation for the electron spin polarization. We then construct, using a rigorous multiple time scale approach, a Bloch equation for the macroscopic (k⃗\vec{k}-averaged) spin polarization on the long time scale, where the spin polarization decays. Spin-conserving energy relaxation and diffusion, which occur on a fast time scale, after the initial spin polarization has been injected, are incorporated and shown to give rise to a weight function which defines the energy averages required for the calculation of the spin relaxation tensor in the Bloch equation. Our approach provides an intuitive way to conceptualize the dynamics of the spin polarization in terms of a ``test'' spin polarization which scatters off ``field'' particles (electrons, impurities, phonons). To illustrate our approach, we calculate for a quantum well the spin lifetime at temperatures and densities where electron-electron and electron-impurity scattering dominate. The spin lifetimes are non-monotonic functions of temperature and density. Our results show that at electron densities and temperatures, where the cross-over from the non-degenerate to the degenerate regime occurs, spin lifetimes are particularly long.Comment: 29 pages, 10 figures, final versio

    Dephasing Times in a Non-degenerate Two-Dimensional Electron Gas

    Full text link
    Studies of weak localization by scattering from vapor atoms for electrons on a liquid helium surface are reported. There are three contributions to the dephasing time. Dephasing by the motion of vapor atoms perpendicular to the surface is studied by varying the holding field to change the characteristic width of the electron layer at the surface. A change in vapor density alters the quasi-elastic scattering length and the dephasing due to the motion of atoms both perpendicular and parallel to the surface. Dephasing due to the electron-electron interaction is dependent on the electron density.Comment: 4 pages, Revte
    • 

    corecore