4,708 research outputs found

    A simple analytic model for astrophysical S-factors

    Full text link
    We propose a physically transparent analytic model of astrophysical S-factors as a function of a center-of-mass energy E of colliding nuclei (below and above the Coulomb barrier) for non-resonant fusion reactions. For any given reaction, the S(E)-model contains four parameters [two of which approximate the barrier potential, U(r)]. They are easily interpolated along many reactions involving isotopes of the same elements; they give accurate practical expressions for S(E) with only several input parameters for many reactions. The model reproduces the suppression of S(E) at low energies (of astrophysical importance) due to the shape of the low-r wing of U(r). The model can be used to reconstruct U(r) from computed or measured S(E). For illustration, we parameterize our recent calculations of S(E) (using the Sao Paulo potential and the barrier penetration formalism) for 946 reactions involving stable and unstable isotopes of C, O, Ne, and Mg (with 9 parameters for all reactions involving many isotopes of the same elements, e.g., C+O). In addition, we analyze astrophysically important 12C+12C reaction, compare theoretical models with experimental data, and discuss the problem of interpolating reliably known S(E) values to low energies (E <= 2-3 MeV).Comment: 13 pages, 5 figures, Phys. Rev. C, accepte

    Clear air turbulence

    Get PDF
    Research on forecasting, detection, and incidents of clear air turbulenc

    Large collection of astrophysical S-factors and its compact representation

    Full text link
    Numerous nuclear reactions in the crust of accreting neutron stars are strongly affected by dense plasma environment. Simulations of superbursts, deep crustal heating and other nuclear burning phenomena in neutron stars require astrophysical S-factors for these reactions (as a function of center-of-mass energy E of colliding nuclei). A large database of S-factors is created for about 5000 non-resonant fusion reactions involving stable and unstable isotopes of Be, B, C, N, O, F, Ne, Na, Mg, and Si. It extends the previous database of about 1000 reactions involving isotopes of C, O, Ne, and Mg. The calculations are performed using the Sao Paulo potential and the barrier penetration formalism. All calculated S-data are parameterized by an analytic model for S(E) proposed before [Phys. Rev. C 82, 044609 (2010)] and further elaborated here. For a given reaction, the present S(E)-model contains three parameters. These parameters are easily interpolated along reactions involving isotopes of the same elements with only seven input parameters, giving an ultracompact, accurate, simple, and uniform database. The S(E) approximation can also be used to estimate theoretical uncertainties of S(E) and nuclear reaction rates in dense matter, as illustrated for the case of the 34Ne+34Ne reaction in the inner crust of an accreting neutron star.Comment: 13 pages, 2 figures, Phys. Rev. C, accepte

    Rain: Relaxations in the sky

    Full text link
    We demonstrate how, from the point of view of energy flow through an open system, rain is analogous to many other relaxational processes in Nature such as earthquakes. By identifying rain events as the basic entities of the phenomenon, we show that the number density of rain events per year is inversely proportional to the released water column raised to the power 1.4. This is the rain-equivalent of the Gutenberg-Richter law for earthquakes. The event durations and the waiting times between events are also characterised by scaling regions, where no typical time scale exists. The Hurst exponent of the rain intensity signal H=0.76>0.5H = 0.76 > 0.5. It is valid in the temporal range from minutes up to the full duration of the signal of half a year. All of our findings are consistent with the concept of self-organised criticality, which refers to the tendency of slowly driven non-equilibrium systems towards a state of scale free behaviour.Comment: 9 pages, 8 figures, submitted to PR

    The Two-Dimensional S=1 Quantum Heisenberg Antiferromagnet at Finite Temperatures

    Full text link
    The temperature dependence of the correlation length, susceptibilities and the magnetic structure factor of the two-dimensional spin-1 square lattice quantum Heisenberg antiferromagnet are computed by the quantum Monte Carlo loop algorithm (QMC). In the experimentally relevant temperature regime the theoretically predicted asymptotic low temperature behavior is found to be not valid. The QMC results however, agree reasonably well with the experimental measurements of La2NiO4 even without considering anisotropies in the exchange interactions.Comment: 4 Pages, 1 table, 4 figure

    Allosteric Control Of Oxygen Binding By Haemoglobin During Embryonic Development In The Crocodile Crocodylus porosus: The Role Of Red Cell Organic Phosphates And Carbon Dioxide

    Get PDF
    The P50 of whole blood [30 degrees C, PCO2=2.08 kPa (15.6 mmHg)] decreases during embryonic development from approximately 6.7 kPa (50 mmHg) at 15 days to about half this value at hatching (86 days), paralleling a decrease in ATP from 100 to 5-10 micromole g-1 Hb. There is also a progressive changeover from embryonic to adult haemoglobin (HbA). A pulse of 2,3- diphosphoglycerate (2,3-DPG) (18 micromole g-1 Hb) occurs late in embryonic life. It has no effect on whole-blood oxygen-affinity and falls rapidly at hatching to values typical of post-hatchling crocodilians in general

    Astrophysical S-factors for fusion reactions involving C, O, Ne and Mg isotopes

    Full text link
    Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 MeV to 18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence S(E) by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments.Comment: 30 pages including 11 tables, 4 figures, ADNDT, accepte

    New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons

    Full text link
    We report on the first results of a sensitive search for scalar coupling of photons to a light neutral boson in the mass range of approximately 1.0 milli-electron volts and coupling strength greater than 10−6^-6 GeV−1^-1 using optical photons. This was a photon regeneration experiment using the "light shining through a wall" technique in which laser light was passed through a strong magnetic field upstream of an optical beam dump; regenerated laser light was then searched for downstream of a second magnetic field region optically shielded from the former. Our results show no evidence for scalar coupling in this region of parameter space.Comment: pdf-file, 10 pages, 4 figures, submitted to Physical Review Letter
    • …
    corecore