7,427 research outputs found
Characterization of hormone and protein release from alpha-toxin- permeabilized chromaffin cells in primary culture
Addition of Staphylococcus aureus alpha-toxin to adult bovine chromaffin cells maintained in primary culture causes permeabilization of cell membrane as shown by the release of intracellular 86Rb+. The alpha-toxin does not provoke a spontaneous release of either catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However the addition of micromolar free Ca2+ concentration induced the co-release of noradrenaline and chromogranin A. In alpha-toxin-treated cells, the released chromogranin A could not be sedimented and lactate dehydrogenase was still associated within cells, which provides direct evidence that secretory product is liberated by exocytosis. By contrast, permeabilization of cells with digitonin caused a Ca2+- dependent but also a Ca2+-independent release of secretory product, a dramatic loss of lactate dehydrogenase, as well as release of secretory product in a sedimentable form. Ca2+-dependent exocytosis from alpha- toxin-permeabilized cells required Mg2+-ATP and did not occur in the presence of other nucleotides. Thus alpha-toxin is a convenient tool to permeabilize chromaffin cells, and has the advantage of keeping intracellular structures, specifically the exocytotic machinery, intact
Evidence of Vortex Jamming in Abrikosov Vortex Flux Flow Regime
We report on dynamics of non-local Abrikosov vortex flow in mesoscopic
superconducting Nb channels. Magnetic field dependence of the non-local voltage
induced by the flux flow shows that vortices form ordered vortex chains.
Voltage asymmetry (rectification) with respect to the direction of vortex flow
is evidence that vortex jamming strongly moderates vortex dynamics in
mesoscopic geometries. The findings can be applied to superconducting devices
exploiting vortex dynamics and vortex manipulation, including superconducting
wires with engineered pinning centers.Comment: 5 pages, 3 figure
Automated Sorting of Oriented Tobacco Leaves
A mechanism has been developed which removes cured burley tobacco leaves from plants so that midribs are oriented parallel. A photosensor was utilized to count leaves as they were removed and a microprocessor determined the number of leaves allocated to each of three grades. Experiments indicated that 84% of leaves removed could be correctly sorted with a 2.4% material loss at an effective rate of approximately 2.4 times that of conventional methods
(Pro)renin receptor and V-ATPase: from Drosophila to humans
A decade ago, the (P)RR [(pro)renin receptor] was discovered and depicted as a potential activator of the tissue renin-angiotensin system. For this reason, the role of the (P)RR in cardiovascular diseases and diabetes has been particularly studied. However, the discovery of embryonic lethality after (P)RR gene deletion in mouse and zebrafish paved the way for additional roles of (P)RR in cell homoeostasis. Indeed, the (P)RR has been shown to associate with vacuolar H+-ATPase, hence its other name ATP6ap2. Developmental studies in Xenopus and Drosophila have revealed an essential role of this association to promote the canonical and non-canonical Wnt signalling pathways, whereas studies with tissue-specific gene deletion have pointed out a role in autophagy. The present review aims to summarize recent findings on the cellular functions of (P)RR emerging from various mutated and transgenic animal models
Efficient GPU Offloading with OpenMP for a Hyperbolic Finite Volume Solver on Dynamically Adaptive Meshes
We identify and show how to overcome an OpenMP bottleneck in the administration of GPU memory. It arises for a wave equation solver on dynamically adaptive block-structured Cartesian meshes, which keeps all CPU threads busy and allows all of them to offload sets of patches to the GPU. Our studies show that multithreaded, concurrent, non-deterministic access to the GPU leads to performance breakdowns, since the GPU memory bookkeeping as offered through OpenMP’s map clause, i.e., the allocation and freeing, becomes another runtime challenge besides expensive data transfer and actual computation. We, therefore, propose to retain the memory management responsibility on the host: A caching mechanism acquires memory on the accelerator for all CPU threads, keeps hold of this memory and hands it out to the offloading threads upon demand. We show that this user-managed, CPU-based memory administration helps us to overcome the GPU memory bookkeeping bottleneck and speeds up the time-to-solution of Finite Volume kernels by more than an order of magnitude
Quantifying spin Hall angles from spin pumping: Experiments and Theory
Spin Hall effects intermix spin and charge currents even in nonmagnetic
materials and, therefore, ultimately may allow the use of spin transport
without the need for ferromagnets. We show how spin Hall effects can be
quantified by integrating permalloy/normal metal (N) bilayers into a coplanar
waveguide. A dc spin current in N can be generated by spin pumping in a
controllable way by ferromagnetic resonance. The transverse dc voltage detected
along the permalloy/N has contributions from both the anisotropic
magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by
their symmetries. We developed a theory that accounts for both. In this way, we
determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach
can readily be adapted to any conducting material with even very small spin
Hall angles.Comment: 4 pages, 4 figure
Surface-enhanced optical third-harmonic generation in Ag island films
Surface-enhanced optical third-harmonic generation (THG) is observed in
silver island films. The THG intensity from Ag nanoparticles is enhanced by
more than two orders of magnitude with respect to the THG intensity from a
smooth and homogeneous silver surface. This enhancement is attributed to local
plasmon excitation and resonance of the local field at the third-harmonic
wavelength. The diffuse and depolarized component of the enhanced THG is
associated with the third-order hyper-Rayleigh scattering in a 2-D random array
of silver nanoparticles.Comment: 4 pages, 2 figure
Fully-dynamic Approximation of Betweenness Centrality
Betweenness is a well-known centrality measure that ranks the nodes of a
network according to their participation in shortest paths. Since an exact
computation is prohibitive in large networks, several approximation algorithms
have been proposed. Besides that, recent years have seen the publication of
dynamic algorithms for efficient recomputation of betweenness in evolving
networks. In previous work we proposed the first semi-dynamic algorithms that
recompute an approximation of betweenness in connected graphs after batches of
edge insertions.
In this paper we propose the first fully-dynamic approximation algorithms
(for weighted and unweighted undirected graphs that need not to be connected)
with a provable guarantee on the maximum approximation error. The transfer to
fully-dynamic and disconnected graphs implies additional algorithmic problems
that could be of independent interest. In particular, we propose a new upper
bound on the vertex diameter for weighted undirected graphs. For both weighted
and unweighted graphs, we also propose the first fully-dynamic algorithms that
keep track of such upper bound. In addition, we extend our former algorithm for
semi-dynamic BFS to batches of both edge insertions and deletions.
Using approximation, our algorithms are the first to make in-memory
computation of betweenness in fully-dynamic networks with millions of edges
feasible. Our experiments show that they can achieve substantial speedups
compared to recomputation, up to several orders of magnitude
Further Characterization of Dopamine Release by Permeabilized PC 12 Cells
Rat pheochromocytoma cells (PC 12) permeabilized with staphylococcal α-toxin release [3H]dopamine after addition of micromolar Ca2+. This does not require additional Mg2+-ATP (in contrast to bovine adrenal medullary chromaffin cells). We also observed Ca2+-dependent [3H]-dopamine release from digitonin-permeabilized PC 12 cells. Permeabilization with α-toxin or digitonin and stimulation of the cells were done consecutively to wash out endogenous Mg2+-ATP. During permeabilization, ATP was removed effectively from the cytoplasm by both agents but the cells released [3H]dopamine in response to micromolar Ca2+ alone. Replacement by chloride of glutamate, which could sustain mitochondrial ATP production in permeabilized cells, does not significantly alter catecholamine release induced by Ca2+. However, Mg2+ without ATP augments the Ca2+-induced release. The release was unaltered by thiol-, hydroxyl-, or calmodulin-interfering substances. Thus Mg2+-ATP, calmodulin, or proteins containing -SH or -OH groups are not necessary for exocytosis in permeabilized PC 12 cells
- …