77 research outputs found

    The role of stationarity in magnetic crackling noise

    Full text link
    We discuss the effect of the stationarity on the avalanche statistics of Barkhuasen noise signals. We perform experimental measurements on a Fe85_{85}B15_{15} amorphous ribbon and compare the avalanche distributions measured around the coercive field, where the signal is stationary, with those sampled through the entire hysteresis loop. In the first case, we recover the scaling exponents commonly observed in other amorphous materials (τ=1.3\tau=1.3, α=1.5\alpha=1.5). while in the second the exponents are significantly larger (τ=1.7\tau=1.7, α=2.2\alpha=2.2). We provide a quantitative explanation of the experimental results through a model for the depinning of a ferromagnetic domain wall. The present analysis shed light on the unusually high values for the Barkhausen noise exponents measured by Spasojevic et al. [Phys. Rev. E 54 2531 (1996)].Comment: submitted to JSTAT. 11 pages 5 figure

    Instanton Analysis of Hysteresis in the Three-Dimensional Random-Field Ising Model

    Full text link
    We study the magnetic hysteresis in the random field Ising model in 3D. We discuss the disorder dependence of the coercive field H_c, and obtain an analytical description of the smooth part of the hysteresis below and above H_c, by identifying the disorder configurations (instantons) that are the most probable to trigger local avalanches. We estimate the critical disorder strength at which the hysteresis curve becomes continuous. From an instanton analysis at zero field we obtain a description of local two-level systems in the ferromagnetic phase.Comment: Phys. Rev. Lett. 96, 117202 (2006

    Monte Carlo Dynamics of driven Flux Lines in Disordered Media

    Full text link
    We show that the common local Monte Carlo rules used to simulate the motion of driven flux lines in disordered media cannot capture the interplay between elasticity and disorder which lies at the heart of these systems. We therefore discuss a class of generalized Monte Carlo algorithms where an arbitrary number of line elements may move at the same time. We prove that all these dynamical rules have the same value of the critical force and possess phase spaces made up of a single ergodic component. A variant Monte Carlo algorithm allows to compute the critical force of a sample in a single pass through the system. We establish dynamical scaling properties and obtain precise values for the critical force, which is finite even for an unbounded distribution of the disorder. Extensions to higher dimensions are outlined.Comment: 4 pages, 3 figure

    Anisotropic Interface Depinning - Numerical Results

    Full text link
    We study numerically a stochastic differential equation describing an interface driven along the hard direction of an anisotropic random medium. The interface is subject to a homogeneous driving force, random pinning forces and the surface tension. In addition, a nonlinear term due to the anisotropy of the medium is included. The critical exponents characterizing the depinning transition are determined numerically for a one-dimensional interface. The results are the same, within errors, as those of the ``Directed Percolation Depinning'' (DPD) model. We therefore expect that the critical exponents of the stochastic differential equation are exactly given by the exponents obtained by a mapping of the DPD model to directed percolation. We find that a moving interface near the depinning transition is not self-affine and shows a behavior similar to the DPD model.Comment: 9 pages, 13 figures, REVTe

    Absorbing states and elastic interfaces in random media: two equivalent descriptions of self-organized criticality

    Full text link
    We elucidate a long-standing puzzle about the non-equilibrium universality classes describing self-organized criticality in sandpile models. We show that depinning transitions of linear interfaces in random media and absorbing phase transitions (with a conserved non-diffusive field) are two equivalent languages to describe sandpile criticality. This is so despite the fact that local roughening properties can be radically different in the two pictures, as explained here. Experimental implications of our work as well as promising paths for future theoretical investigations are also discussed.Comment: 4 pages. 2 Figure

    Origin of the roughness exponent in elastic strings at the depinning threshold

    Full text link
    Within a recently developed framework of dynamical Monte Carlo algorithms, we compute the roughness exponent ζ\zeta of driven elastic strings at the depinning threshold in 1+1 dimensions for different functional forms of the (short-range) elastic energy. A purely harmonic elastic energy leads to an unphysical value for ζ\zeta. We include supplementary terms in the elastic energy of at least quartic order in the local extension. We then find a roughness exponent of ζ≃0.63\zeta \simeq 0.63, which coincides with the one obtained for different cellular automaton models of directed percolation depinning. The quartic term translates into a nonlinear piece which changes the roughness exponent in the corresponding continuum equation of motion. We discuss the implications of our analysis for higher-dimensional elastic manifolds in disordered media.Comment: 4 pages, 2 figure

    Drift of a polymer chain in disordered media

    Full text link
    We consider the drift of a polymer chain in a disordered medium, which is caused by a constant force applied to the one end of the polymer, under neglecting the thermal fluctuations. In the lowest order of the perturbation theory we have computed the transversal fluctuations of the centre of mass of the polymer, the transversal and the longitudinal size of the polymer, and the average velocity of the polymer. The corrections to the quantities under consideration, which are due to the interplay between the motion and the quenched forces, are controlled by the driving force and the degree of polymerization. The transversal fluctuations of the Brownian particle and of the centre of mass of the polymer are obtained to be diffusive. The transversal fluctuations studied in the present Letter may also be of relevance for the related problem of the drift of a directed polymer in disordered media and its applications.Comment: 11 pages, RevTex, Accepted for publication in Europhysics Letter

    Interface Motion in Random Media at Finite Temperature

    Get PDF
    We have studied numerically the dynamics of a driven elastic interface in a random medium, focusing on the thermal rounding of the depinning transition and on the behavior in the T=0T=0 pinned phase. Thermal effects are quantitatively more important than expected from simple dimensional estimates. For sufficient low temperature the creep velocity at a driving force equal to the T=0T=0 depinning force exhibits a power-law dependence on TT, in agreement with earlier theoretical and numerical predictions for CDW's. We have also examined the dynamics in the T=0T=0 pinned phase resulting from slowly increasing the driving force towards threshold. The distribution of avalanche sizes S∥S_\| decays as S∥−1−κS_\|^{-1-\kappa}, with κ=0.05±0.05\kappa = 0.05\pm 0.05, in agreement with recent theoretical predictions.Comment: harvmac.tex, 30 pages, including 9 figures, available upon request. SU-rm-94073

    Scaling in self-organized criticality from interface depinning?

    Full text link
    The avalanche properties of models that exhibit 'self-organized criticality' (SOC) are still mostly awaiting theoretical explanations. A recent mapping (Europhys. Lett.~53, 569) of many sandpile models to interface depinning is presented first, to understand how to reach the SOC ensemble and the differences of this ensemble with the usual depinning scenario. In order to derive the SOC avalanche exponents from those of the depinning critical point, a geometric description is discussed, of the quenched landscape in which the 'interface' measuring the integrated activity moves. It turns out that there are two main alternatives concerning the scaling properties of the SOC ensemble. These are outlined in one dimension in the light of scaling arguments and numerical simulations of a sandpile model which is in the quenched Edwards-Wilkinson universality class.Comment: 7 pages, 3 figures, Statphys satellite meeting in Merida, July 200

    Anisotropic Scaling in Threshold Critical Dynamics of Driven Directed Lines

    Full text link
    The dynamical critical behavior of a single directed line driven in a random medium near the depinning threshold is studied both analytically (by renormalization group) and numerically, in the context of a Flux Line in a Type-II superconductor with a bulk current J⃗\vec J. In the absence of transverse fluctuations, the system reduces to recently studied models of interface depinning. In most cases, the presence of transverse fluctuations are found not to influence the critical exponents that describe longitudinal correlations. For a manifold with d=4−ϵd=4-\epsilon internal dimensions, longitudinal fluctuations in an isotropic medium are described by a roughness exponent ζ∥=ϵ/3\zeta_\parallel=\epsilon/3 to all orders in ϵ\epsilon, and a dynamical exponent z∥=2−2ϵ/9+O(ϵ2)z_\parallel=2-2\epsilon/9+O(\epsilon^2). Transverse fluctuations have a distinct and smaller roughness exponent ζ⊥=ζ∥−d/2\zeta_\perp=\zeta_\parallel-d/2 for an isotropic medium. Furthermore, their relaxation is much slower, characterized by a dynamical exponent z⊥=z∥+1/νz_\perp=z_\parallel+1/\nu, where ν=1/(2−ζ∥)\nu=1/(2-\zeta_\parallel) is the correlation length exponent. The predicted exponents agree well with numerical results for a flux line in three dimensions. As in the case of interface depinning models, anisotropy leads to additional universality classes. A nonzero Hall angle, which has no analogue in the interface models, also affects the critical behavior.Comment: 26 pages, 8 Postscript figures packed together with RevTeX 3.0 manuscript using uufiles, uses multicol.sty and epsf.sty, e-mail [email protected] in case of problem
    • …
    corecore