3,459 research outputs found
Effective sigma models and lattice Ward identities
We perform a lattice analysis of the Faddeev-Niemi effective action
conjectured to describe the low-energy sector of SU(2) Yang-Mills theory. To
this end we generate an ensemble of unit vector fields ("color spins") n from
the Wilson action. The ensemble does not show long-range order but exhibits a
mass gap of the order of 1 GeV. From the distribution of color spins we
reconstruct approximate effective actions by means of exact lattice
Schwinger-Dyson and Ward identities ("inverse Monte Carlo"). We show that the
generated ensemble cannot be recovered from a Faddeev-Niemi action, modified in
a minimal way by adding an explicit symmetry-breaking term to avoid the
appearance of Goldstone modes.Comment: 25 pages, 17 figures, JHEP styl
A construction of bent functions from plateaued functions
In this presentation, a technique for constructing bent functions from plateaued functions is introduced and analysed. This generalizes earlier techniques for constructing bent from near-bent functions. Using this construction, we obtain a big variety of inequivalent bent functions, some weakly regular and some non-weakly regular. Classes of bent function with some additional properties that enable the construction of strongly regular graphs are constructed, and explicit expressions for bent functions with maximal degree are presented
Collective T- and P- Odd Electromagnetic Moments in Nuclei with Octupole Deformations
Parity and time invariance violating forces produce collective P- and T- odd
moments in nuclei with static octupole deformation. Collective Schiff moment,
electric octupole and dipole and also magnetic quadrupole appear due to the
mixing of rotational levels of opposite parity and can exceed single-particle
moments by more than a factor of 100. This enhancement is due to two factors,
the collective nature of the intrinsic moments and the small energy separation
between members of parity doublets. The above moments induce T- and P- odd
effects in atoms and molecules. Experiments with such systems may improve
substantially the limits on time reversal violation.Comment: 9 pages, Revte
Practical Low Data-Complexity Subspace-Trail Cryptanalysis of Round-Reduced PRINCE
Subspace trail cryptanalysis is a very recent new cryptanalysis
technique, and includes differential, truncated differential,
impossible differential, and integral attacks as special cases.
In this paper, we consider PRINCE, a widely analyzed block cipher
proposed in 2012.
After the identification of a 2.5 rounds subspace trail of PRINCE, we
present several (truncated differential) attacks up to 6 rounds of PRINCE. This includes a very practical attack with the lowest data complexity of only 8 plaintexts for 4 rounds, which co-won the final round of the PRINCE challenge in the 4-round chosen-plaintext category.
The attacks have been verified using a C implementation.
Of independent interest, we consider a variant of PRINCE in which ShiftRows and MixLayer operations are exchanged in position. In particular, our result shows that the position of ShiftRows and MixLayer operations influences the security of PRINCE.
The same analysis applies to follow-up designs inspired by PRINCE
A Seat at the Table: Minority Representation and County Governing Boards
This study focuses on minority representation on county governing boards to determine the extent of minority representation, and then to provide explanation for the exiting patterns in its representation. The dependent variable used in this paper is a count variable employing a Zero-Inflated Negative Binomial model. The results indicate that minority populations, counties located in the South, partisan elections, the size of county governing boards and urban counties have positive effects on increased minority representation, while at-large voting districts have a negative effect. Furthermore, it advances the need for greater research on county governing boards, county governments in general and a new agenda for the future study of minority representation on local governing bodies
Nearby Doorways, Parity Doublets and Parity Mixing in Compound Nuclear States
We discuss the implications of a doorway state model for parity mixing in
compound nuclear states. We argue that in order to explain the tendency of
parity violating asymmetries measured in Th to have a common sign,
doorways that contribute to parity mixing must be found in the same energy
neighbourhood of the measured resonance. The mechanism of parity mixing in this
case of nearby doorways is closely related to the intermediate structure
observed in nuclear reactions in which compound states are excited. We note
that in the region of interest (Th) nuclei exhibit octupole
deformations which leads to the existence of nearby parity doublets. These
parity doublets are then used as doorways in a model for parity mixing. The
contribution of such mechanism is estimated in a simple model.Comment: 11 pages, REVTE
- …