211 research outputs found

    Non linear fields in the SPS and their compensation

    Get PDF
    Tight tolerances were placed upon non-linearities in the SPS magnet system and sextupoles installed to adjust the chromaticity of the machine. These sextupoles together with octupoles and active damping were used to adjust the SPS beam dynamics and to damp and suppress both multibunch and single bunch transverse instabilities up to 10/sup 13/ protons per pulse. (4 refs)

    The LHC Prototype Full-Cell: Design Study

    Get PDF
    As a continuation of the experimental program carried-out with String 1, project management decided toward the end of 1995 to construct an LHC prototype Full-Cell, also known as String 2. The present document reports on the outcome of the one-year design effort by the community of specialists contributing to the LHC Prototype Full-Cell: it informs specialists on the boundary areas with other syste ms and conveys to the general public a description of the facility

    Dynamic Effects and their Control at the LHC

    Get PDF
    Tune, chromaticity and orbit of the LHC beams have to be precisely controlled by synchronising the magnetic field of quadrupole, sextupole and corrector magnets.This is a challenging task for an accelerator using superconducting magnets, whose field and field errors will have large dynamic effects.The accelerator physics requirements are tight due to the limited dynamic aperture and the large energy stored in the beams.The power converters need to be programmed in order to generate the magnetic functions with defined tolerances. During the injection process and the energy ramp the magnetic performance cannot be predicted with sufficient accuracy, and therefore real-time feedback systems based on magnetic measurements and beam observations are proposed. Beam measurements are used to determine a correction factor for some of the power converters. From magnetic measurements the excitation of small magnets to compensate the sextupolar (b3) and decapolar (b5) field components in the dipole magnets will be derived. To meet these requirements a deterministic control system is envisaged

    Hyperphosphorylation and Cleavage at D421 Enhance Tau Secretion

    Get PDF
    It is well established that tau pathology propagates in a predictable manner in Alzheimer’s disease (AD). Moreover, tau accumulates in the cerebrospinal fluid (CSF) of AD’s patients. The mechanisms underlying the propagation of tau pathology and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the overexpression of human tau resulted in its secretion by Hela cells. The main form of tau secreted by these cells was cleaved at the C-terminal. Surprisingly, secreted tau was dephosphorylated at several sites in comparison to intracellular tau which presented a strong immunoreactivity to all phospho-dependent antibodies tested. Our data also revealed that phosphorylation and cleavage of tau favored its secretion by Hela cells. Indeed, the mimicking of phosphorylation at 12 sites known to be phosphorylated in AD enhanced tau secretion. A mutant form of tau truncated at D421, the preferential cleavage site of caspase-3, was also significantly more secreted than wild-type tau. Taken together, our results indicate that hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in the brain and its accumulation in the CSF
    • …
    corecore