64 research outputs found
Glycine-rich RNA binding protein of Oryza sativa inhibits growth of M15 E. coli cells
<p>Abstract</p> <p>Background</p> <p>Plant glycine-rich RNA binding proteins have been implicated to have roles in diverse abiotic stresses.</p> <p>Findings</p> <p><it>E. coli </it>M15 cells transformed with full-length rice glycine-rich RNA binding protein4 (OsGR-RBP4), truncated rice glycine-rich RNA binding protein4 (OsGR-RBP4ÎC) and rice FK506 binding protein (OsFKBP20) were analyzed for growth profiles using both broth and solid media. Expression of OsGR-RBP4 and OsGR-RBP4ÎC proteins caused specific, inhibitory effect on growth of recombinant M15 <it>E. coli </it>cells. The bacterial inhibition was shown to be time and incubation temperature dependent. Removal of the inducer, IPTG, resulted in re-growth of the cells, indicating that effect of the foreign proteins was of reversible nature. Although noted at different levels of dilution factors, addition of purified Os-GR-RBP4 and OsGR-RBP4ÎC showed a similar inhibitory effect as seen with expression inside the bacterial cells.</p> <p>Conclusions</p> <p>Expression of eukaryotic, stress-associated OsGR-RBP4 protein in prokaryotic <it>E. coli </it>M15 cells proves injurious to the growth of the bacterial cells. <it>E. coli </it>genome does not appear to encode for any protein that has significant homology to OsGR-RBP4 protein. Therefore, the mechanism of inhibition appears to be due to some illegitimate interactions of the OsGR-RBP4 with possibly the RNA species of the trans-host bacterial cells. The detailed mechanism underlying this inhibition remains to be worked out.</p
A method for purification, identification and validation of DNMT1 mRNA binding proteins
DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division. DNMT1 expression is tightly regulated within the cell cycle. Our previous study showed that the binding of a protein with an apparent size of ~40 kDa on DNMT1 3â-UTR triggered the destabilization of DNMT1 mRNA transcript during Go/G1 phase. Using RNA affinity capture with the 3â-UTR of DNMT1 mRNA and matrix-assisted laser desorption-time of flight tandem mass spectrometry (MALDI-TOF-MS-MS) analysis, we isolated and identified AUF 1 (AU-rich element ARE:poly-(U)-binding/degradation factor) as the binding protein. We then validated the role of this protein in the destabilization of DNMT1 mRNA. In this report, we detail the different approaches used for the isolation, the identification of a RNA binding protein and the validation of its role
Differential IL-1β secretion by monocyte subsets is regulated by Hsp27 through modulating mRNA stability.
Monocytes play a central role in regulating inflammation in response to infection or injury, and during auto-inflammatory diseases. Human blood contains classical, intermediate and non-classical monocyte subsets that each express characteristic patterns of cell surface CD16 and CD14; each subset also has specific functional properties, but the mechanisms underlying many of their distinctive features are undefined. Of particular interest is how monocyte subsets regulate secretion of the apical pro-inflammatory cytokine IL-1β, which is central to the initiation of immune responses but is also implicated in the pathology of various auto-immune/auto-inflammatory conditions. Here we show that primary human non-classical monocytes, exposed to LPS or LPSâ+âBzATP (3'-O-(4-benzoyl)benzyl-ATP, a P2X7R agonist), produce approx. 80% less IL-1β than intermediate or classical monocytes. Despite their low CD14 expression, LPS-sensing, caspase-1 activation and P2X7R activity were comparable in non-classical monocytes to other subsets: their diminished ability to produce IL-1β instead arose from 50% increased IL-1β mRNA decay rates, mediated by Hsp27. These findings identify the Hsp27 pathway as a novel therapeutic target for the management of conditions featuring dysregulated IL-1β production, and represent an advancement in understanding of both physiological inflammatory responses and the pathogenesis of inflammatory diseases involving monocyte-derived IL-1β
Nitric Oxide-Sensitive Guanylyl Cyclase Is Differentially Regulated by Nuclear and Non-Nuclear Estrogen Pathways in Anterior Pituitary Gland
17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, ι and β, that catalyses cGMP formation. ι1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing ι1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, ι1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify ι1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of ι1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway
Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements
A considerable number of genes that code for AU-rich mRNAs including cytokines, growth factors, transcriptional factors, and certain receptors are involved in both chronic inflammation and cancer. Overexpression of these genes is affected by aberrations or by prolonged activation of several signaling pathways. AU-rich elements (ARE) are important cis-acting short sequences in the 3â˛UTR that mediate recognition of an array of RNA-binding proteins and affect mRNA stability and translation. This review addresses the cellular and molecular mechanisms that are common between inflammation and cancer and that also govern ARE-mediated post-transcriptional control. The first part examines the role of the ARE-genes in inflammation and cancer and sequence characteristics of AU-rich elements. The second part addresses the common signaling pathways in inflammation and cancer that regulate the ARE-mediated pathways and how their deregulations affect ARE-gene regulation and disease outcome
- âŚ