15,093 research outputs found

    A note on the analogy between superfluids and cosmology

    Full text link
    A new analogy between superfluid systems and cosmology is here presented, which relies strongly on the following ingredient: the back-reaction of the vacuum to the quanta of sound waves. We show how the presence of thermal phonons, the excitations above the quantum vacuum for T>0T> 0, enable us to deduce an hydrodynamical equation formally similar to the one obtained for a perfect fluid in a Universe obeying the Friedmann-Robertson-Walker metric.Comment: Accepted for publication in Modern Physics Letters

    Decay of polarons and molecules in a strongly polarized Fermi gas

    Full text link
    The ground state of an impurity immersed in a Fermi sea changes from a polaron to a molecule as the interaction strength is increased. We show here that the coupling between these two states is strongly suppressed due to a combination of phase space effects and Fermi statistics, and that it vanishes much faster than the energy difference between the two states, thereby confirming the first order nature of the polaron-molecule transition. In the regime where each state is metastable, we find quasiparticle lifetimes which are much longer than what is expected for a usual Fermi liquid. Our analysis indicates that the decay rates are sufficiently slow to be experimentally observable.Comment: Version accepted in PRL. Added discussion of three-body losses to deeply bound molecular state

    Quantum ether: photons and electrons from a rotor model

    Full text link
    We give an example of a purely bosonic model -- a rotor model on the 3D cubic lattice -- whose low energy excitations behave like massless U(1) gauge bosons and massless Dirac fermions. This model can be viewed as a ``quantum ether'': a medium that gives rise to both photons and electrons. It illustrates a general mechanism for the emergence of gauge bosons and fermions known as ``string-net condensation.'' Other, more complex, string-net condensed models can have excitations that behave like gluons, quarks and other particles in the standard model. This suggests that photons, electrons and other elementary particles may have a unified origin: string-net condensation in our vacuum.Comment: 10 pages, 6 figures, RevTeX4. Home page http://dao.mit.edu/~we

    High-energy gluon bremsstrahlung in a finite medium: harmonic oscillator versus single scattering approximation

    Full text link
    A particle produced in a hard collision can lose energy through bremsstrahlung. It has long been of interest to calculate the effect on bremsstrahlung if the particle is produced inside a finite-size QCD medium such as a quark-gluon plasma. For the case of very high-energy particles traveling through the background of a weakly-coupled quark-gluon plasma, it is known how to reduce this problem to an equivalent problem in non-relativistic two-dimensional quantum mechanics. Analytic solutions, however, have always resorted to further approximations. One is a harmonic oscillator approximation to the corresponding quantum mechanics problem, which is appropriate for sufficiently thick media. Another is to formally treat the particle as having only a single significant scattering from the plasma (known as the N=1 term of the opacity expansion), which is appropriate for sufficiently thin media. In a broad range of intermediate cases, these two very different approximations give surprisingly similar but slightly differing results if one works to leading logarithmic order in the particle energy, and there has been confusion about the range of validity of each approximation. In this paper, I sort out in detail the parametric range of validity of these two approximations at leading logarithmic order. For simplicity, I study the problem for small alpha_s and large logarithms but alpha_s log << 1.Comment: 40 pages, 23 figures [Primary change since v1: addition of new appendix reviewing transverse momentum distribution from multiple scattering

    On an exact hydrodynamic solution for the elliptic flow

    Full text link
    Looking for the underlying hydrodynamic mechanisms determining the elliptic flow we show that for an expanding relativistic perfect fluid the transverse flow may derive from a solvable hydrodynamic potential, if the entropy is transversally conserved and the corresponding expansion "quasi-stationary", that is mainly governed by the temperature cooling. Exact solutions for the velocity flow coefficients v2v_2 and the temperature dependence of the spatial and momentum anisotropy are obtained and shown to be in agreement with the elliptic flow features of heavy-ion collisions.Comment: 10 pages, 4 figure

    A new modelling framework for statistical cumulus dynamics

    Get PDF
    We propose a new modelling framework suitable for the description of atmospheric convective systems as a collection of distinct plumes. The literature contains many examples of models for collections of plumes in which strong simplifying assumptions are made, a diagnostic dependence of convection on the large-scale environment and the limit of many plumes often being imposed from the outset. Some recent studies have sought to remove one or the other of those assumptions. The proposed framework removes both, and is explicitly time-dependent and stochastic in its basic character. The statistical dynamics of the plume collection are defined through simple probabilistic rules applied at the level of individual plumes, and van Kampen's system size expansion is then used to construct the macroscopic limit of the microscopic model. Through suitable choices of the microscopic rules, the model is shown to encompass previous studies in the appropriate limits, and to allow their natural extensions beyond those limits

    Renormalization group approach to Fermi Liquid Theory

    Full text link
    We show that the renormalization group (RG) approach to interacting fermions at one-loop order recovers Fermi liquid theory results when the forward scattering zero sound (ZS) and exchange (ZS′') channels are both taken into account. The Landau parameters are related to the fixed point value of the ``unphysical'' limit of the forward scattering vertex. We specify the conditions under which the results obtained at one-loop order hold at all order in a loop expansion. We also emphasize the similarities between our RG approach and the diagrammatic derivation of Fermi liquid theory.Comment: 4 pages (RevTex) + 1 postcript file, everything in a uuencoded file, uses epsf (problem with the figure in the first version

    Temperature dependence of the spin susceptibility of a clean Fermi gas with repulsion

    Full text link
    Spin susceptibility of a clean Fermi gas with repulsion in any dimension is considered using a supersymmetric low energy theory of interacting spin excitations and renormalization scheme recently proposed by Aleiner and Efetov [cond-mat/0602309]. We generalize this method to include the coupling to the magnetic field. As a result, we obtain for the correction δχ\delta \chi to the Pauli susceptibility a non-analytic temperature dependence of the form Td−1γb2(T) T^{d-1}\gamma_{b}^{2}(T) in dimensions d=2,3,d=2,3, where γb(T)\gamma_{b}(T) is an effective dd-dependent logarithmically renormalized backscattering amplitude. In one dimension, δχ\delta \chi is proportional to γb(T)\gamma_{b}(T), and we reproduce a well known result obtained long ago by a direct calculation.Comment: 25 pages, 10 figure
    • …
    corecore