30,785 research outputs found

    Break-down of the single-active-electron approximation for one-photon ionization of the B 1Σu+^1\Sigma_u^+ state of H2_2 exposed to intense laser fields

    Full text link
    Ionization, excitation, and de-excitation to the ground state is studied theoretically for the first excited singlet state B 1Σu+^1\Sigma_u^+ of H2_2 exposed to intense laser fields with photon energies in between about 3 eV and 13 eV. A parallel orientation of a linear polarized laser and the molecular axis is considered. Within the dipole and the fixed-nuclei approximations the time-dependent Schr\"odinger equation describing the electronic motion is solved in full dimensionality and compared to simpler models. A dramatic break-down of the single-active-electron approximation is found and explained to be due to the inadequate description of the final continuum states.Comment: 9 pages, 4 figure

    Solving the m-mixing problem for the three-dimensional time-dependent Schr\"{o}dinger equation by rotations: application to strong-field ionization of H2+

    Get PDF
    We present a very efficient technique for solving the three-dimensional time-dependent Schrodinger equation. Our method is applicable to a wide range of problems where a fullly three-dimensional solution is required, i.e., to cases where no symmetries exist that reduce the dimensionally of the problem. Examples include arbitrarily oriented molecules in external fields and atoms interacting with elliptically polarized light. We demonstrate that even in such cases, the three-dimensional problem can be decomposed exactly into two two-dimensional problems at the cost of introducing a trivial rotation transformation. We supplement the theoretical framework with numerical results on strong-field ionization of arbitrarily oriented H2+ molecules.Comment: 5 pages, 4 figure

    A 'p-n' diode with hole and electron-doped lanthanum manganite

    Full text link
    The hole-doped manganite La0.7Ca0.3MnO3 and the electron-doped manganite La0.7Ce0.3MnO3 undergo an insulator to metal transition at around 250 K, above which both behave as a polaronic semiconductor. We have successfully fabricated an epitaxial trilayer (La0.7Ca0.3MnO3/SrTiO3/La0.7Ce0.3MnO3), where SrTiO3 is an insulator. At room temperature, i.e. in the semiconducting regime, it exhibits asymmetric current-voltage (I-V) characteristics akin to a p-n diode. The observed asymmetry in the I-V characteristics disappears at low temperatures where both the manganite layers are metallic. To the best of our knowledge, this is the first report of such a p-n diode, using the polaronic semiconducting regime of doped manganites.Comment: PostScript text and 2 figures, to be published in Appl. Phys. Lett

    Probing Quark Distribution Amplitudes Through Generalized Parton Distributions at Large Momentum Transfer

    Full text link
    In the large momentum transfer limit, generalized parton distributions can be calculated through a QCD factorization theorem which involves perturbatively-calculable hard kernels and light-cone parton distribution amplitudes of hadrons. We illustrate this through the Hq(x,ξ,t)H_q(x,\xi,t) distribution for the pion and proton, presenting the hard kernels at leading order. As a result, experimental data on the generalized parton distributions in this regime can be used to determine the functional form of the parton distribution amplitudes which has thus far been quite challenging to obtain. Our result can also be used as a constraint in phenomenological GPD parametrizations.Comment: 7 pages, 4 figures; new references and figure added, errors correcte

    The Zeeman effect in the G band

    Full text link
    We investigate the possibility of measuring magnetic field strength in G-band bright points through the analysis of Zeeman polarization in molecular CH lines. To this end we solve the equations of polarized radiative transfer in the G band through a standard plane-parallel model of the solar atmosphere with an imposed magnetic field, and through a more realistic snapshot from a simulation of solar magneto-convection. This region of the spectrum is crowded with many atomic and molecular lines. Nevertheless, we find several instances of isolated groups of CH lines that are predicted to produce a measurable Stokes V signal in the presence of magnetic fields. In part this is possible because the effective Land\'{e} factors of lines in the stronger main branch of the CH A2Δ^{2}\Delta--X2Π^{2}\Pi transition tend to zero rather quickly for increasing total angular momentum JJ, resulting in a Stokes VV spectrum of the G band that is less crowded than the corresponding Stokes II spectrum. We indicate that, by contrast, the effective Land\'{e} factors of the RR and PP satellite sub-branches of this transition tend to ±1\pm 1 for increasing JJ. However, these lines are in general considerably weaker, and do not contribute significantly to the polarization signal. In one wavelength location near 430.4 nm the overlap of several magnetically sensitive and non-sensitive CH lines is predicted to result in a single-lobed Stokes VV profile, raising the possibility of high spatial-resolution narrow-band polarimetric imaging. In the magneto-convection snapshot we find circular polarization signals of the order of 1% prompting us to conclude that measuring magnetic field strength in small-scale elements through the Zeeman effect in CH lines is a realistic prospect.Comment: 22 pages, 6 figures. To be published in the Astrophysical Journa

    Si/SiGe bound-to-continuum quantum cascade emitters

    Get PDF
    Si/SiGe bound-to-continuum quantum cascade emitters designed by self-consistent 6-band k.p modeling and grown by low energy plasma enhanced chemical vapour deposition are presented demonstrating electroluminescence between 1.5 and 3 THz. The electroluminescence is Stark shifted by an electric field and demonstrates polarized emission consistent with the design. Transmission electron microscopy and x-ray diffraction are also presented to characterize the thick heterolayer structure

    Nanometer scale electronic reconstruction at the interface between LaVO3 and LaVO4

    Full text link
    Electrons at interfaces, driven to minimize their free energy, are distributed differently than in bulk. This can be dramatic at interfaces involving heterovalent compounds. Here we profile an abrupt interface between V 3d2 LaVO3 and V 3d0 LaVO4 using electron energy loss spectroscopy. Although no bulk phase of LaVOx with a V 3d1 configuration exists, we find a nanometer-wide region of V 3d1 at the LaVO3/LaVO4 interface, rather than a mixture of V 3d0 and V 3d2. The two-dimensional sheet of 3d1 electrons is a prototypical electronic reconstruction at an interface between competing ground states.Comment: 14 pages, 5 figure

    The effect of cattle slurry in combination with nitrate and the nitrification inhibitor dicyandiamide on in situ nitrous oxide and dinitrogen emissions

    Get PDF
    peer-reviewedA field study was conducted to determine the effect of the nitrification inhibitor dicyandiamide (DCD) on N2O and N2 emissions after cattle slurry (CS) application in the presence of nitrate (NO3) fertiliser on seven different occasions (between March 2009 and March 2011). N2O emissions from CS in the presence of NO3 fertiliser were very high (0.4–8.7% of applied N) over a 20-day period, under mild moist conditions. Emissions were significantly larger from the CS treatment compared to an NH4+-N source, supplying the same rate of N as in the slurry. This study supports the view that organic fertilisers should not be applied at the same time as nitrate-based fertilisers, as significant increases in N2O emissions occur. The average N2O mole fraction (N2O/(N2O + N2)) over all seven application dates was 0.34 for CSNO3 compared to 0.24 for the NH4ClNO3 treatment, indicating the dominance of N2 emissions. The rate of nitrification in CSNO3 was slower than in NH4ClNO3, and DCD was found to be an effective nitrification inhibitor in both treatments. However, as N2O emissions were found to be predominantly associated with the NO3 pool, the effect of DCD in lowering N2O emissions is limited in the presence of a NO3 fertiliser. To obtain the maximum cost-benefit of DCD in lowering N2O emissions, under mild moist conditions, it should not be applied to a nitrate containing fertiliser (e.g. ammonium nitrate or calcium ammonium nitrate), and therefore the application of DCD should be restricted to ammonium-based organic or synthetic fertilisers.This research was funded by the Irish National Development Plan, through the Research Stimulus Fund (RSF 07 519), administered by the Irish Department of Agriculture, Food and the Marine

    Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the 2D momentum distribution

    Full text link
    We solve the three-dimensional time-dependent Schr\"{o}dinger equation for a few-cycle circularly polarized femtosecond laser pulse interacting with an oriented target exemplified by an Argon atom, initially in a 3px3\text{p}_{x} or 3py3\text{p}_{y} state. The photoelectron momentum distributions show distinct signatures of the orbital structure of the initial state as well as the carrier-envelope phase of the applied pulse. Our \textit{ab initio} results are compared with results obtained using the length-gauge strong-field approximation, which allows for a clear interpretation of the results in terms of classical physics. Furthermore, we show that ionization by a circularly polarized pulse completely maps out the angular nodal structure of the initial state, thus providing a potential tool for studying orbital symmetry in individual systems or during chemical reactions

    Resonant enhancements of high-order harmonic generation

    Get PDF
    Solving the one-dimensional time-dependent Schr\"odinger equation for simple model potentials, we investigate resonance-enhanced high-order harmonic generation, with emphasis on the physical mechanism of the enhancement. By truncating a long-range potential, we investigate the significance of the long-range tail, the Rydberg series, and the existence of highly excited states for the enhancements in question. We conclude that the channel closings typical of a short-range or zero-range potential are capable of generating essentially the same effects.Comment: 7 pages revtex, 4 figures (ps files
    corecore