7,168 research outputs found

    Symmetries and Observables for BF-theories in Superspace

    Get PDF
    The supersymmetric version of a topological quantum field theory describing flat connections, the super BF-theory, is studied in the superspace formalism. A set of observables related to topological invariants is derived from the curvature of the superspace. Analogously to the non-supersymmetric versions, the theory exhibits a vector-like supersymmetry. The role of the vector supersymmetry and an additional new symmetry of the action in the construction of observables is explained.Comment: 11 pages, LaTe

    An analytic Approach to Turaev's Shadow Invariant

    Full text link
    In the present paper we extend the "torus gauge fixing approach" by Blau and Thompson (Nucl. Phys. B408(1):345--390, 1993) for Chern-Simons models with base manifolds M of the form M= \Sigma x S^1 in a suitable way. We arrive at a heuristic path integral formula for the Wilson loop observables associated to general links in M. We then show that the right-hand side of this formula can be evaluated explicitly in a non-perturbative way and that this evaluation naturally leads to the face models in terms of which Turaev's shadow invariant is defined.Comment: 44 pages, 2 figures. Changes have been made in Sec. 2.3, Sec 2.4, Sec. 3.4, and Sec. 3.5. Appendix C is ne

    Vector Supersymmetry of 2D Yang-Mills Theory

    Get PDF
    The vector supersymmetry of the 2D topological BF model is extended to 2D Yang-Mills. The consequences of the corresponding Ward identity on the ultraviolet behavior of the theory are analyzed.Comment: Some references adde

    Topological Aspects of Gauge Fixing Yang-Mills Theory on S4

    Full text link
    For an S4S_4 space-time manifold global aspects of gauge-fixing are investigated using the relation to Topological Quantum Field Theory on the gauge group. The partition function of this TQFT is shown to compute the regularized Euler character of a suitably defined space of gauge transformations. Topological properties of the space of solutions to a covariant gauge conditon on the orbit of a particular instanton are found using the SO(5)SO(5) isometry group of the S4S_4 base manifold. We obtain that the Euler character of this space differs from that of an orbit in the topologically trivial sector. This result implies that an orbit with Pontryagin number \k=\pm1 in covariant gauges on S4S_4 contributes to physical correlation functions with a different multiplicity factor due to the Gribov copies, than an orbit in the trivial \k=0 sector. Similar topological arguments show that there is no contribution from the topologically trivial sector to physical correlation functions in gauges defined by a nondegenerate background connection. We discuss possible physical implications of the global gauge dependence of Yang-Mills theory.Comment: 13 pages, uuencoded and compressed LaTeX file, no figure

    New Results on N=4 SuperYang-Mills Theory

    Get PDF
    The N=4 SuperYang--Mills theory is covariantly determined by a U(1) \times SU(2) \subset SL(2,R) \times SU(2) internal symmetry and two scalar and one vector BRST topological symmetry operators. This determines an off-shell closed sector of N=4 SuperYang-Mills, with 6 generators, which is big enough to fully determine the theory, in a Lorentz covariant way. This reduced algebra derives from horizontality conditions in four dimensions. The horizontality conditions only depend on the geometry of the Yang-Mills fields. They also descend from a genuine horizontality condition in eight dimensions. In fact, the SL(2,R) symmetry is induced by a dimensional reduction from eight to seven dimensions, which establishes a ghost-antighost symmetry, while the SU(2) symmetry occurs by dimensional reduction from seven to four dimensions. When the four dimensional manifold is hyperKahler, one can perform a twist operation that defines the N=4 supersymmetry and its SL(2,H)\sim SU(4) R-symmetry in flat space. (For defining a TQFT on a more general four manifold, one can use the internal SU(2)-symmetry and redefine a Lorentz SO(4) invariance). These results extend in a covariant way the light cone property that the N=4 SuperYang-Mills theory is actually determined by only 8 independent generators, instead of the 16 generators that occur in the physical representation of the superPoincare algebra. The topological construction disentangles the off-shell closed sector of the (twisted) maximally supersymmetric theory from the (irrelevant) sector that closes only modulo equations of motion. It allows one to escape the question of auxiliary fields in N=4 SuperYang-Mills theory.Comment: 14 page

    Cubic String Field Theory in pp-wave Background and Background Independent Moyal Structure

    Full text link
    We study Witten open string field theory in the pp-wave background in the tensionless limit, and construct the N-string vertex in the basis which diagonalizes the string perturbative spectrum. We found that the Witten *-product can be viewed as infinite copies of the Moyal product with the same noncommutativity parameter θ=2\theta=2. Moreover, we show that this Moyal structure is universal in the sense that, written in the string bit basis, Witten's *-product for any background can always be given in terms of the above-mentioned Moyal structure. We identify some projective operators in this algebra that we argue to correspond to D-branes of the theory.Comment: Latex, 23 pages, reference adde

    Light-like Big Bang singularities in string and matrix theories

    Full text link
    Important open questions in cosmology require a better understanding of the Big Bang singularity. In string and matrix theories, light-like analogues of cosmological singularities (singular plane wave backgrounds) turn out to be particularly tractable. We give a status report on the current understanding of such light-like Big Bang models, presenting both solved and open problems.Comment: 20 pages, invited review for Class. Quant. Grav; v3: section 2.3 shortened, discussion on DLCQ added in section 3.1, published versio

    G_2 invariant 7D Euclidean super Yang-Mills theory as a higher-dimensional analogue of the 3D super-BF theory

    Full text link
    A formulation of the N_T=1, D=8 Euclidean super Yang-Mills theory with generalized self-duality and reduced Spin(7)-invariance is given which avoids the peculiar extra constraints of Nishino and Rajpoot, hep-th/0210132. Its reduction to 7 dimensions leads to the G_2-invariant N_T=2, D=7 super Yang-Mills theory which may be regarded as a higher-dimensional analogue of the N=2, D=3 super-BF theory. When reducing further that G_2-invariant theory to 3 dimensions one gets the N_T=2 super-BF theory coupled to a spinorial hypermultiplet.Comment: 9 pages, Late

    Swimming in curved space or The Baron and the cat

    Full text link
    We study the swimming of non-relativistic deformable bodies in (empty) static curved spaces. We focus on the case where the ambient geometry allows for rigid body motions. In this case the swimming equations turn out to be geometric. For a small swimmer, the swimming distance in one stroke is determined by the Riemann curvature times certain moments of the swimmer.Comment: 19 pages 6 figure
    • …
    corecore