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Abstract

The N = 4 super-Yang–Mills theory is covariantly determined by two scalar and one vector BRST topological symmetry operato
determines an off-shell closed sector ofN = 4 super-Yang–Mills, with 6 generators, which is big enough to fully determine the theory
Lorentz-covariant way. This reduced algebra derives from horizontality conditions in four dimensions. The horizontality conditions only d
the geometry of the Yang–Mills fields. They also descend from a genuine horizontality condition in eight dimensions. When the four-dim
manifold is hyper-Kähler, one can perform a twist operation that defines theN = 4 supersymmetry and aSL(2,H) intern symmetry (the “Euclidea
version” of theSU(4) R-symmetry in Minkowski space). These results extend in a covariant way the light-cone property that theN = 4 super-
Yang–Mills theory is actually determined by only 8 independent generators, instead of the 16 generators that occur in the physical repres
the super-Poincaré algebra. The topological construction disentangles the off-shell closed sector of the (twisted) maximally supersymm
from the sector that closes only modulo equations of motion. It allows one to escape the question of auxiliary fields inN = 4 super-Yang–Mills
theory.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Recently, we have constructed the genuineN = 2 super-
symmetric algebra in four and eight dimensions in their twis
form, directly from extended horizontality conditions[1]. The
new features were the geometrical construction of both sc
and vector topological BRST symmetries. A remarkable pr
erty is that the supersymmetry Yang–Mills algebra, both wit
and 16 generators, contain an off-shell closed sector, with 5
9 generators, respectively, which is big enough to comple
determine the theory. The key of the geometrical construc
is the understanding that one must determine the scalar top
ical BRST symmetry in a way that is explicitly consistent w
reparametrization symmetry. This yields the vector topolog
BRST symmetry in a purely geometrical way.

Here we will extend the result to the case of the maxim
supersymmetricN = 4 algebra in four dimensions, with it
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16 supersymmetric spinorial generators andSL(2,H) internal
symmetry.1 The most determining phenomenon occurs w
one computes the dimensional reduction from eight to se
dimensions, which provides anSL(2,R) symmetry. This ex-
plains the organization of the Letter and the eventual obtai
of four-dimensional horizontality conditions, which determi
theN = 4 algebra in a twisted form. We will also discuss t
possible other twists of the supersymmetric theory.

As for the physical application of our construction, ha
ing obtained an off-shell closed algebra allows one to esc
the question of auxiliary fields inN = 4 super-Yang–Mills
theory. In a separate publication, using this algebra and
consequences, we will give an improved demonstration of
renormalization and finiteness of theN = 4 super-Yang–Mills
theory[2].

1 The internal symmetry groupSU(4) of N = 4 super-Yang–Mills, defined
on a Minkowski space, must be replaced on a Euclidean one bySL(2,H) ∼
SO(5,1). This is implied by the fact thatN = 4 super-Yang–Mills is the di-
mensional reduction of the ten-dimensionalN = 1 super-Yang–Mills theory
which is only defined on Minkowski space.

https://core.ac.uk/display/82530519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:baulieu@lpthe.jussieu.fr
mailto:bossard@lpthe.jussieu.fr
http://dx.doi.org/10.1016/j.physletb.2005.09.091
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


132 L. Baulieu, G. Bossard / Physics Letters B 632 (2006) 131–137

l-
n-

la

s,
di
d i
l-
rm
if

ho
po
eld
ra

he

ons
ble

try
ns,
-
e

an
an-
for

,
id
ca

eft-

eed,
rep-
al

ost
r

ri-

s
r

me

bled

-

r
ma-
y

2. From the D = 8 to the D = 7 topological Yang–Mills
theory

2.1. Determination of both topological scalar symmetries in
seven dimensions

TheD = 8 topological Yang–Mills theory relies on the fo
lowing horizontality equation, completed with its Bianchi ide
tity [1]:

(d + s + δ − iκ )
(
A + c + |κ|c̄) + (

A + c + |κ|c̄)2

(1)= F + Ψ + g(κ)η + iκχ + Φ + |κ|2Φ̄.

One has the closure relations:

(2)s2 = δ2 = 0, {s, δ} = Lκ .

We refer to[1] for a detailed explanation of these formu
and the twisted fields that they involve.Ψ is a 1-form topolog-
ical ghost andχ is an antiselfdual 2-form in eight dimension
with 7 independent components. Selfduality exists in eight
mensions when the manifold has a holonomy group include
Spin(7). The octonionic invariant 4-form of such a manifold a
lows one to define selfduality, by the decomposition of a 2-fo
as28 = 7⊕21. κ is a covariantly constant vector, which exists
the holonomy group is included inG2 ⊂ Spin(7). Φ andΦ̄ are,
respectively, a topological scalar ghost of ghost and an antig
for antighost.c andc̄ can be interpreted as the Faddeev–Po
ghost and antighost of the eight-dimensional Yang–Mills fi
A. s andδ are the scalar and vector topological BRST ope
tors. In flat space, one can writeδ + |κ|δgauge(c̄) = κµQµ, and
we understand thatQ = s + δgauge(c) andQµ count for 9 inde-
pendent generators, giving an off-shell closed sector ofN = 2,
D = 8 twisted supersymmetry, which fully determines the t
ory [1].

To determine the topological symmetry in seven dimensi
we start from a manifold in eight dimensions that is reduci
M8 = N7 ×S1, whereN is aG2-manifold. We can choseκ as a
tangent vector toS1. Thus, the 8-dimensional vector symme
along the circle reduces to a scalar one in seven dimensios̄,
and the reduction of the antiselfdual 2-formχ gives a seven
dimensional 1-formΨ̄ . So, the dimensional reduction of th
horizontality condition(1) is

(d + s + s̄)(A + c + c̄) + (A + c + c̄)2

(3)= F + Ψ + Ψ̄ + Φ + L + Φ̄.

Indeed, with our choice ofκ , L = iκA = A8 in eight di-
mensions. Eq.(3) can be given a different interpretation th
Eq. (1). It contains no vector symmetry and looks like a st
dard 7-dimensional BRST–antiBRST equation. The trans
mation of L, the origin of which isA8, is now given by the
Bianchi identity of Eq.(3). In fact, after dimensional reduction
L is understood as a curvature. Using the convenient pyram
diagrammatic description of ghost–antighost structures, we
-
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rewrite the field description, as follows:

(4)

A,L

Ψ, η̄ Ψ̄

Φ Φ̄

η

−→
A

Ψ Ψ̄

Φ L Φ̄

η̄ η

As compared to the asymmetrical diagram on the l
hand side, the one on the right-hand side exhibits anSL(2,R)

symmetry, which counts the ghost–antighost numbers. Ind
each line of this diagram corresponds to an irreducible
resentation ofSL(2,R), namely, a completely symmetric
SL(2,R)-spinorial tensor with componentsφg,G−g , whereg

andG − g are, respectively, the (positive) ghost and antigh
numbers ofφ, and 2g − G is the effective ghost numbe
of φ. This SL(2,R) symmetry actually applies to the cova
ant ghost–antighost spectrum of ap-form gauge fieldφp, φ̃p =∑

0�G�p

∑
0�g�G φ

g,G−g
p−G .

In fact, the fields(Ψ, Ψ̄ ) and (η, η̄) can be identified a
SL(2,R) doublets,Ψ α andηα , α = 1,2, and the three scala
fields (Φ,L, Φ̄) as aSL(2,R) triplet, Φi , i = 1,2,3. The in-
dexα andi are, respectively, raised and lowered by the volu
form εαβ of SL(2,R) and the Minkowski metricηij of signature
(2,1). Both BRST and antiBRST operators can be assem
into aSL(2,R) doubletsα = (s, s̄).

The horizontality condition(3) can be solved, with the in
troduction of three 0-form Lagrange multipliers,η, η̄, b and a
1-formT :

sA = Ψ − dAc, s̄A = Ψ̄ − dAc̄,

sΨ = −dAΦ − [c,Ψ ], s̄Ψ = −T − dAL − [c̄,Ψ ],
sΦ = −[c,Φ], s̄Φ = −η̄ − [c̄,Φ],
sΦ̄ = η − [c, Φ̄], s̄Φ = −[c̄, Φ̄],
sη = [Φ,Φ̄] − [c, η], s̄η = −[Φ̄,L] − [c̄, η],
sL = η̄ − [c,L], s̄L = −η − [c̄,L],
sη̄ = [Φ,L] − [c, η̄], s̄η̄ = [Φ,Φ̄] − [c̄, η̄],
sΨ̄ = T − [c, Ψ̄ ], s̄Ψ̄ = −dAΦ̄ − [c̄, Ψ̄ ],
sT = [Φ, Ψ̄ ] − [c,T ], s̄T = −dAη + [L, Ψ̄ ] − [Φ̄,Ψ ]

− [c̄, T ],
sc = Φ − c2, s̄c = L − b,

sc̄ = b − [c, c̄], s̄c̄ = Φ̄ − c̄2,

(5)sb = [Φ, c̄] − [c, c̄], s̄b = η + [c̄,L].
These equations are notSL(2,R)-covariant because of ou

simplest choice of the transformation of antighosts transfor
tions, likesc̄ = b − [c, c̄]. By suitable redefinitions of auxiliar
fields, one can get, however, a manifestlySL(2,R)-covariant
formulation of the symmetry, as follows:

sαA = Ψ α − dAcα,

sαηβ = −2σ ij
β

α[Φi,Φj ] − [
cα, ηβ

]
,

sαΨβ = δα
βT − σ i

β
αdAΦi − [

cα,Ψβ

]
,

sαT = 1
dAηα + σ iαβ [Φi,Ψβ ] − [

cα, T
]
,

2
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sαΦi = 1

2
σi

αβηβ − [
cα,Φi

]
,

sαcβ = −δα
βb + σ i

β
αΦi − 1

2

[
cα, cβ

]
,

(6)

sαb = − 1

2
ηα + 1

2
σ i αβ [Φi, cβ ] + 1

12

[
cβ,

[
cβ, cα

]]

− 1

2

[
cα, b

]
.

The Cartan algebra (that we will denote by the subindex(c))
is obtained by adding gauge transformations with parametc

andc̄, from s ands̄, respectively. It reads:

sα
(c)A = Ψ α,

sα
(c)ηβ = −2σ ij

β
α[Φi,Φj ],

sα
(c)Ψβ = δα

βT − σ i
β

αdAΦi,

sα
(c)T = 1

2
dAηα + σ iαβ [Φi,Ψβ ],

(7)sα
(c)Φi = 1

2
σi

αβηβ.

The equivariant (Cartan) algebra is the one that will match
twist with the relevant part of the twisted supersymmetry
gebra. Its closure is only modulo gauge transformations,
parameters that are ghosts of ghosts.

2.2. Determination of the equivariant part of both topological
vector symmetries in seven dimensions

We have produced by dimensional reduction a new sc
(antiBRST) topological symmetry operator. However, we h
apparently lost the rest of the vector symmetry in eight dim
sions, since we have chosenκ along the circle of dimensiona
reduction. The freedom of choosing this circle generates an
tomorphism of the seven-dimensional symmetry. It allows
to obtain two vector topological symmetries, in seven dim
sions, in aSL(2,R) symmetric way.

In the genuine theory in eight dimensions, the definit
of a chosenSpin(7) structure is actually arbitrary. The di
ferent choices of aSpin(7) structure on the eight-dimension
Riemann manifold can be parametrized by the transfor
tions of SO(8) \ Spin(7). However, such transformations ca
not be represented on eight-dimensional fields such as
antiselfdual 2-formχµν . They are generated by antiselfdu
2-form infinitesimal parameters, which can be parametri
by seven-dimensional vectors, after dimensional reductio
7 dimensions. One can thus define the following (commut
7-dimensional derivationγ , which depends on a covariant
constant seven-dimensional vectorκµ (the indicesµ,ν, . . . are
seven-dimensional), and acts as follows on the 7-dimensi
fermion fields:

γΨ α
µ = −κµηα − Cµν

σ κνΨ α
σ ,

(8)γ ηα = κµΨ α
µ .

The action ofγ is zero on the bosonic field of the equiva
ant BRST algebra, but on the Lagrange multiplier fieldT . (We
y
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will shortly define γT , by consistency.)Cµνσ is the seven-
dimensionalG2-invariant octonionic 3-form and its dual
the 4-form C

µνσρ . We will use the notationiκ  Cw1 =
−Cµν

σ κνwσ dxµ. The derivationγ expresses the arbitrarine
in the choice of an eighth component, in order to perform
dimensional reduction. To each constant vector onN , one can
assign anU(1) group, which is subset ofSO(8)\Spin(7). Since
{sα

(c), s
β

(c)} = σ iαβδgauge(Φi), one can verify on all fields:

(9)
{
etγ sα

(c)e
−tγ , etγ s

β

(c)e
−tγ

} = {
sα
(c), s

β

(c)

}
.

One defines the vector operator:

(10)δα
(c) ≡ [

sα
(c),γ

]
.

Since[[sα
(c),γ ],γ ] = −sα

(c), one has:

(11)etγ sα
(c)e

−tγ = cost sα
(c) − sint δα

(c).

To ensure the validity of this formula onT , one defines the
transformation of the auxiliary fieldT as follows:

(12)γT = −iκF − 2iκ  CT .

Computing the commutators ofsα
(c) andγ , one gets the ac

tion of δα
(c):

δα
(c)A = g(κ)ηα + iκ  CΨ α,

δα
(c)Ψβ = δα

β iκ (F + CT ) + σ i
β

αiκ  CdAΦi

− 2g(κ)σ ij
β

α[Φi,Φj ],
δα
(c)Φi = −1

2
σi

αβiκΨβ,

δα
(c)ηβ = −δα

β iκT + σ i
β

αLκΦi,

(13)

δα
(c)T = 1

2
dAiκΨ α − iκ  CdAηα + g(κ)σ iαβ [Φi,ηβ ]

− σ iαβiκ  C[Φi,Ψβ ] −LκΨ α.

δα
(c) is a pair of two vector symmetries in seven dimensio

which transform as anSL(2,R)-doublet. This completes th
scalar doubletsα

(c).
Then, one can verify that the anticommutation relations

the vector operatorδα
(c)

are:

{
sα
(c), δ

β

(c)

} = εαβ
(
Lκ + δgauge(iκA)

)
,

(14)
{
δα
(c), δ

β

(c)

} = 2σ iαβδgauge(Φi).

Reciprocally, these closure relations uniquely determineδα
(c),

from the knowledge ofsα
(c).

In the next section, we will rederive these transformat
laws, from horizontality equations. Moreover, we will exte
them as nilpotent transformations, by including gauge trans
mations.

It is instructive to check the expression we have just
tained forδα

(c), by starting from Eq.(1) in 8 dimensions (with
the notational changēc → γ ), and computing the dimension
reduction with a vectorκ alongN , instead of along the circle
This gives:

δΦ̄ = −[|κ|γ, Φ̄
]
,



134 L. Baulieu, G. Bossard / Physics Letters B 632 (2006) 131–137

y

po
h

tor

-

n

on

l

lity

ner-

etry
uta-
d by
en-

y in
,

tor

tion

r-
the

s in

one,
ap-
ue
f an

di-
δA = g(κ)η + iκ  CΨ̄ − |κ|dAγ,

δη = LκΦ̄ − [|κ|γ,η
]
,

δΨ = iκ (F − CT ) + g(κ)[Φ,Φ̄] − [|κ|γ,Ψ
]
,

δL = iκ Ψ̄ − [|κ|γ,L
]
,

δΦ = iκΨ − [|κ|γ,Φ
]
,

δη̄ = iκ (T + dAL) − [|κ|γ, η̄
]
,

δΨ̄ = iκ  CdAΦ̄ − g(κ)[Φ̄,L] − [|κ|γ, Ψ̄
]
,

(15)

δT = Lκ Ψ̄ + iκ  C
(
dAη + [Φ̄]) + g(κ)[L,η]

− g(κ)[Φ̄, η̄] − [|κ|γ,T
]
.

One can then verify:

(16)[s̄,γ ] = δ

with the modified definition that

γT = iκF − 2iκ  CT − iκ  CdAL,

(17)γ c̄ = −|κ|γ, γ γ = 1

|κ| c̄.
The difference between this expression ofδ + |κ|δgauge(γ ) and
that of a component of theSL(2,R)-covariant vector symmetr
operatorsδα

(c) is just a field redefinition.

2.3. The complete Faddeev–Popov ghost dependent vector and
scalar topological symmetries in seven dimensions

We now directly construct the scalar and vector BRST to
logical operatorssα andδα , the equivariant analogs of whic
aresα

(c) andδα
(c). One needs scalar Faddeev–Popov ghosts,c, c̄,

γ , γ̄ , which are associated to the equivariant BRST opera
s(c), s̄(c), δ(c), δ̄(c), respectively.

The relations(14) suggests the following horizontality con
dition, with (d + s + s̄ + δ + δ̄)2 = 0:

(d + s + s̄ + δ + δ̄)
(
A + c + c̄ + |κ|γ + |κ|γ̄ )

+ (
A + c + c̄ + |κ|γ + |κ|γ̄ )2

= F + Ψ + Ψ̄ + g(κ)(η + η̄) + iκ  C(Ψ + Ψ̄ )

(18)+ (
1+ |κ|2)(Φ + L + Φ̄).

It is SL(2,R)- andγ -invariant. By construction, this equatio
has the following indetermination:

(19){s, δ} + {s̄, δ̄} = 0.

This degeneracy is raised, owing to the introduction of the c
stant vectorκ , with

(20){s, δ} = Lκ , {s̄, δ̄} = −Lκ .

This relation is fulfilled by completing Eq.(18)by the following
ones:

(d + s + δ − iκ )
(
A + c + |κ|γ ) + (

A + c + |κ|γ )2

(21)= F + Ψ + g(κ)η + iκ  C(Ψ̄ ) + (
Φ + |κ|2Φ̄)

,

(d + s̄ + δ̄ + iκ )
(
A + c̄ + |κ|γ̄ ) + (

A + c̄ + |κ|γ̄ )2

(22)= F + Ψ̄ + g(κ)η̄ + iκ  C(Ψ ) + (
Φ̄ + |κ|2Φ)

.

-

s

-

The SL(2,R)- and γ -invariant equations(18), (21), (22)are
consistent, but not independent. Only one of Eqs.(21) or (22)is
needed to complete Eq.(18). One introduces theb field as usua
in order to solve equations of the typesc̄ + s̄c + · · · = 0. One
can verify that, by expansion in ghost number, the horizonta
conditions reproduce the transformations(5) and (15).

We note that the number of symmetries carried by the ge
atorssα

(c) andδα
(c) is 1+ 1+ 7+ 7= 16. They yield, by untwist-

ing in flat space, the complete set of Poincaré supersymm
generators (we do not reproduce here this lengthy comp
tion). We can understand the seven generators determine
δ̄ as the dimensional reduction of the twisted antiselfdual g
erator ofN = 2, D = 8 supersymmetry, and̄s and δ as the
dimensional reduction of the twisted vector supersymmetr
8 dimensions. Only a maximum of 9= 1 + 1 + 7 generators
among the 16 ones that are determined bys, s̄, δ, δ̄, build an
off-shell closed algebra, since both operatorsδα

(c) depend on a
single vectorκ . In fact, the commutation relations of the vec
operatorsQµ andQ̄ν , whereδ(c) = κµQµ and δ̄(c) = κµQ̄µ,
yield non-closure terms for their antisymmetric part inµ,ν.
One can chooseQ, Q̄, Qµ as such a maximal subalgebra.

Dimensional reduction therefore transforms theNT = 1
eight-dimensional theory into aNT = 2 theory, with anSL(2,R)

internal symmetry, and aG2 ⊂ Spin(7) Lorentz symmetry. As a
matter of fact, this algebra gives theSL(2,R)-invariant twisted
supersymmetry transformations[4] in the limit of flat manifold.

2.4. Seven-dimensional invariant action

The most general gauge-invariant topological gauge func
Ψ , which yields aδ-invariant actionS = sΨ − 1

2

∫
M

C∧ TrF∧F ,
is:

Ψ = 2
∫
M

Tr
(
C∧Ψ̄∧F + Ψ̄  (dAL + T )

(23)+ Ψ  dAΦ̄ + η[Φ,Φ̄] + η̄[Φ̄,L]).
This function turns out to bēs-exact and thus̄s-invariant. More-
over,S is δ̄-invariant. By using theSL(2,R)-covariant form of
the algebra, we can compute the gauge functionΨ in a mani-
festly invariant way, as a component of a doubletΨ α . One has
σ iαβδαΨ β = 0 andΨ α = δαG. S = sαΨ α − 1

2

∫
M

C∧ TrF∧F ,
and, with our conventions,Ψ ∝ Ψ 1. The automorphism gene
ated byγ leaves invariant neither the gauge function, nor
action, since its action breaks theSpin(7)-structure of the 8-
dimensional theory. These properties will remain analogou
4 dimensions, and we will give more details in this case.

3. Reduction to four dimensions and N = 4 theory

The process of dimensional reduction can be further d
from 7 dimensions. The ghost–antighost symmetry that has
peared when going down from 8 to 7 dimensions will contin
to hold true, and therefore, one remains in the framework o
NT = 2 theory, withSL(2,R) invariance.

One is concerned by going down from seven to four
mensions. TheSO(7) symmetry is decomposed intoSO(4) ×



L. Baulieu, G. Bossard / Physics Letters B 632 (2006) 131–137 135

i-

he
pe

-
-

-

by
-
ce
tio
th

n

ua

m

n
of

ith

tal

a

n

per-
a

SO(3) ∼ SU(2) × SU(2) × SU(2), and insides this decompos
tion, theG2 symmetry is decomposed intoSU(2)×diag(SU(2)

× SU(2)). So, the (twisted) 4-dimensional theory has aSpin(4)

Lorentz symmetry, with anSL(2,R) internal symmetry.
It is useful to use a hyper-Kähler structure to simplify t

form of the equations. For instance, given the 3 constant hy
Kähler 2-formsJ I

µν , an antiselfdual 2-formhµν can be writ-
ten ashµν = hIJ

I
µν , where hI is a SU(2) triplet made of

scalars. Capital indices asI are devoted to the adjoint rep
resentation of the chiralSU(2) factor of the Lorentz symme
try (which leaves invariant self-dual 2-forms), the scalarshI

correspond toA7,A6,A5, etc. This allows simplified expres
sions for scalars, such as, for instance,εIJKhIhJ hK instead
of hµ

νhν
σ hσ

µ. Moreover, one is interested in obtaining
twist theN = 4 super-Yang–Mills theory. This is a justifica
tion of the restricted choice of a hyper-Kähler manifold, sin
two constant spinors are needed to perform the twist opera
and eventually to map the topological ghosts on spinors. In
untwisted theory, the bosonic fieldshI is in the representatio
of theSU(2) ⊂ SL(2,H) R-symmetry.

3.1. Equivariant scalar and vector algebra in four dimensions

By dimensional reduction of the seven-dimensional eq
tions of Section2, one can compute the CartanSL(2,R) doublet
of scalar topological BRST operators for the topological sy
metry in four dimensions:

sα
(c)A = Ψ α,

sα
(c)Ψβ = δα

βT − σ i
β

αdAΦi,

sα
(c)h

I = χα I ,

sα
(c)Φi = 1

2
σi

αβηβ,

sα
(c)χ

I
β = δα

βHI + σ i
β

α
[
Φi,h

I
]
,

sα
(c)ηβ = −2σ ij

β
α[Φi,Φj ],

sα
(c)H

I = 1

2

[
ηα,hI

] + σ iαβ
[
Φi,χ

I
β

]
,

(24)sα
(c)T = 1

2
dAηα + σ iαβ [Φi,Ψβ ].

One has the closure relations{α
(c)s

β}
(c) = σ iαβδgauge(Φi). The Car-

tan vector algebra is:

δα
(c)A = g(κ)ηα + g(JI κ)χαI ,

δα
(c)Ψβ = δα

β

(
iκF − g(JI κ)HI

) + σ i
β

αg(JI κ)
[
Φi,h

I
]

− 2σ ij
β

αg(κ)[Φi,Φj ],
δα
(c)Φi = −1

2
σi

αβiκΨβ,

δα
(c)ηβ = −δα

β iκT + σ i
β

αLκΦi,

δα
(c)T = 1

2
dAiκΨ α − g(JI κ)

([
ηα,hI

] + σ iαβ
[
Φi,χ

I
β

])
+ g(κ)σ iαβ [Φi,ηβ ] −LκΨ α,

δα
(c)h

I = −iJ I κΨ α,
r-

n
e

-

-

δα
(c)χ

I
β = δα

β

(
LκhI + iJ I κT

) + σ i
β

αLJ I κΦi,

(25)

δα
(c)H

I = 1

2

[
iκΨ α,hI

] +LJ I κηα + σ iαβ [Φi, iJ I κΨβ ]
−LκχαI .

One has,δ{α
(c)δ

β}
(c) = |κ|2σ iαβδgauge(Φi), and δα

(c) anticommute

with sα
(c)

, as follows2:

(26)
{
sα
(c), δ

β

(c)

} = εαβ
(
Lκ + δgauge(iκA)

)
.

The four-dimensional vector operators aresα-exact, as in seve
dimensions,δα

(c) = [sα
(c),γ ], where the non-zero component

γ are

γΨα = −g(κ)ηα − g(JI κ)χI
α ,

γT = −iκF + 2g(JI κ)HI ,

γ ηα = iκΨα,

γHI = −LκhI − 2iJ I κT ,

(27)γχI
α = iJ I κΨα.

As in seven dimensions, one has aU(1) automorphism of
the algebra, which is not a symmetry of the theory, w
etγ sα

(c)e
−tγ = cost sα

(c) −sint δα
(c) andetγ δα

(c)e
−tγ = cost δα

(c) +
sint sα

(c)
.

3.2. Invariant action

There are two gauge functions which fit in a fundamen
multiplet of SL(2,R), and satisfy:

(28)σ iαβδ(c)αΨ β = 0.

The action is defined as:

(29)S = −1

2

∫
M

TrF∧F + sα
(c)Ψ α.

Eq. (28) completely constrains the gauge function (up to
global scale factor), as follows:

Ψ α =
∫
M

Tr

(
χI

αHI + χI
αJI  F − Ψα  T + J I  Ψα∧dAhI

− σ i
α

βΨβ  dAΦi − 2 σ ij
α

βηβ [Φi,Φj ]
(30)− σ i

α
βχI

β [Φi,hI ] + 1

2
 εIJKχI

α

[
hJ ,hK

])
.

The action(29) is δα- and sα-invariant. Indeed, one ca
check that it verifies:

(31)

S = −1

2

∫
M

TrF∧F + sα
(c)s(c)αF = −1

2

∫
M

TrF∧F + sα
(c)δ(c)αG

2 Note that, the existence of a covariantly constant vector field on a hy
Kähler manifoldM implies thatM is flat. This explains the possible use of
complete quaternionic base of the tangent space TM:κ , J I κ for the description
of the vector symmetry.
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F =
∫
M

Tr

(
hIH

I + hIJ
I  F + 1

3
εIJKhIhJ hK

(32)− 1

2
Ψ α  Ψα + 1

2
 ηαηα

)
,

G =
∫
M

Tr

(
−1

2
g(κ)∧

(
(A− ◦

A)∧(F+ ◦
F) − 1

3
(A− ◦

A)3
)

(33)

− 1

2
 εIJKhILJ J κhK + sα

(c)δ(c)α

(
1

2
hIh

I − 2

3
ΦiΦi

))
.

These facts remind us that we are in the context of aNT = 2
theory. The critical points of the Morse functionF in the field
space are given by the equations

J I  F + 1

2
 εI

JK

[
hJ ,hK

] = 0,

(34)dA  hI J
I = 0.

Eqs. (34) are the dimensional reduction of selfduality equ
tions in 7 dimensions. Refs.[5–7] display analogous equation
corresponding to the dimensional reduction of the selfdua
equation in 8 dimensions. Ref.[3] indicates that the modu
problems defined by both equations are equivalent.3

Expanding the actionS, and integrating outT andHI , re-
produces theN = 4 action in its twisted form[5,6]4

S ≈
∫
M

Tr

(
−1

2
F  F + 1

4
dAhI  dAhI + 2dAΦi  dAΦi

− 2χα
I J I  dAΨα + 2Ψ α  dAηα

+ 2 ηα
[
hI ,χ

I
α

] + JI  Ψ α
[
hI ,Ψα

]
+ εIJKχαI

[
hJ ,χK

α

] − 2 σ iαβχαI

[
Φi,χ

I
β

]
− 2 σ iαβηα[Φi,ηβ ] − 2σ iαβΨα  [Φi,Ψβ ]
− 1

8
 [hI ,hJ ][hI ,hJ

] − 2
[
Φi,hI

][
Φi,h

I
]

(35)− 4
[
Φi,Φj

][Φi,Φj ]
)

.

In fact, it is not necessary to askSL(2,R)-invariance from
the beginning. Rather, looking for aδ-, s- and s̄-invariant
action, with ghost number zero, determines a unique ac
Eq. (29). This action has the additionalSL(2,R) and δ̄ invari-
ances. Thus theN = 4 supersymmetric action is determin
by the invariance under the action of only 6 generatorss, s̄, δ,
with a much smaller internal symmetry than theSL(2,H) R-
symmetry, namely, the ghost number symmetry.

3 In fact, to solve the complete moduli problem[3], one must add the follow

ing equations for the curvatures:dAΦi = 0, [Φi,h
I ] = 0, [Φi,Φj ] = 0.

4 As a matter of fact, if the manifold on which the theory is defined is

hyper-Kähler, theJ I cannot be considered as constant. In this case the s
fields hI acquires a “mass” term linear in the selfdual part of the Riem
tensor.
,

r

3.3. Horizontality condition in four dimensions

The algebra is not contained in a single horizontality con
tion, as in the seven-dimensional case. In fact, one has sp
conditions for the Yang–Mills field, and for the scalar fieldshI .
(This gives the possibility of building matter multiplets, by r
laxing the condition thathI is in the adjoint representation o
the gauge group.) They are:

(d + s + s̄ + δ + δ̄)
(
A + c + c̄ + |κ|γ + |κ|γ̄ )

+ (
A + c + c̄ + |κ|γ + |κ|γ̄ )2

= F + Ψ + Ψ̄ + g(κ)(η + η̄) + g(JI κ)
(
χI + χ̄ I

)
+ (

1+ |κ|2)(Φ + L + Φ̄),

(dA + s(c) + s̄c̄ + δγ + δ̄γ̄ )hI

(36)= dAhI + χ̄ I − χI + iJ I κ (Ψ̄ − Ψ ),

(d + s + δ − iκ )
(
A + c + |κ|γ ) + (

A + c + |κ|γ )2

= F + Ψ + g(κ)η + g(JI κ)χI + Φ + |κ|2Φ̄,

(37)(dA + s(c) + δγ − iκ )hI = dAhI + χ̄ I + iJ I κ Ψ̄ .

These equations and their Bianchi identities fix the action os,
s̄, δ andδ̄, by expansion in ghost number, up to the introduct
of auxiliary fields that are needed for solving the indetermi
cies of the form “s-antighost+ s̄-ghost”. These indeterminacie
introduce auxiliary fields in the equivariant part of the alg
bra, T andHI , as well as in the Faddeev–Popov sector. T
latter does not affect the equivariant, that is, gauge-invar
sector. To be more precise about the number of auxiliary fie
all the actions given by a symmetrized product of operator
the four Faddeev–Popov ghosts are determined by the clo
relations of the algebra. There is one indeterminacy for e
antisymmetrized product of operators. To close the algeb
the Faddeev–Popov sector, 11= 6+ 4+ 1 Lagrange multiplier
fields must be introduced, with the standard technique. W
not give here the complete algebra for these fields, which
postpone for a further paper, devoted to a new demonstrati
the finiteness of theN = 4, D = 4 theory.

We can gauge-fix the action ins- ands̄-invariant way and/or
in a s- andδ-invariant way. In the former case, one uses anss̄-
exact term which gauge-fixes the connectionA. This ss̄-exact
term eliminates all fields of the Faddeev–Popov sector, butc, c̄,
andb ≡ sc̄. In the former case, one uses ansδ-exact term. In
this case,̄c is replaced byγ .

4. Different twists of N = 4 super-Yang–Mills

As noted in[6,8] there are three non-equivalent twists
N = 4 super-Yang–Mills, corresponding to the different p
sible choices of anSU(2) in the R-symmetry groupSL(2,H).
When one defines the symmetry by horizontality conditio
these 3 different possibilities correspond to different repre
tations of the matter fields. These matter fields are, respecti
organized in anSL(2,R) Majorana–Weyl spinor, a vector fiel
and a quaternion. The latter is the one studied in the prev
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section,5 and, as a matter of fact, the most studied in the li
ature[3,5,7,10]. It is the only case that can be understood a
dimensional reduction of the eight-dimensional topological t
ory. We will shortly see that the two other cases have scalar
vector symmetries that are not big enough for a determina
of the action.

4.1. Spinor representation

The first twist gives anNT = 1 theory. It is obtained by
breakingSpin(4)⊗SL(2,H) into Spin(4)⊗SU(2)⊗SL(2,R)⊗
U(1), and then taking the diagonal of the chiralSU(2) of
Spin(4) with the SU(2) of the previous decomposition o
SL(2,H). The bosonic matter fieldhα is then a chiralSL(2,R)

Majorana–Weyl spinor. The ghostλα+ and antighostλα− of the
matter field are, respectively, chiral and antichiralSL(2,R)

Majorana–Weyl spinors. The horizontality condition reads:

(38)(dA + s(c) + δ(c) − iκ )hα = dAhα + λα+ + /κλα−.

Introducing the auxiliary antichiralSL(2,R) Majorana–Weyl
spinorsDα , one gets:

s(c)h
α = λα+, δ(c)h

α = /κλα−,

s(c)λ
α+ = [

Φ,hα
]
, δ(c)λ

α+ = /κDα +Lκhα,

s(c)λ
α− = Dα, δ(c)λ

α− = /κ
[
Φ̄, hα

]
,

s(c)D
α = [

Φ,λα−
]
, δ(c)D

α = /κ
[
η,hα

] + /κ
[
Φ̄, λα+

]
(39)+Lκλα−.

With this definition of the twist, there is no other scalar or vec
charge, which leaves us with aNT = 1 theory. The action is no
completely determined by these two symmetries.

4.2. Vector representation

One breaksSL(2,H) into Spin(4) ⊗ SO(1,1) and then takes
the diagonal ofSpin(4) ⊗ Spin(4) [9]. The matter horizontality
condition involves a vector fieldV µ ≡ hµ, its vector ghostΨ̄
and antighosts scalarη̄ and selfdual 2-form̄χ ,

(40)(dA + s(c) + δ(c) − iκ )V = dAV + Ψ̄ + g(κ)η̄ + iκ χ̄ .

5 The fieldL is the real part of the quaternion and the fieldshI the imaginary
one.
-
a
-
d
n

This give the following transformations of the fields:

s(c)V = Ψ̄ , δ(c)V = g(κ)η̄ + iκ χ̄ ,

s(c)Ψ̄ = [Φ,V ], δ(c)Ψ̄ = g(κ)h + iκ H̄ +LκV ,

s(c)η̄ = h, δ(c)η̄ = −[Φ̄, iκV ],
s(c)h = [Φ, η̄], δ(c)h = [η, iκV ] − [Φ̄, iκ Ψ̄ ] +Lκ η̄,

s(c)χ̄ = H̄ , δ(c)χ̄ = −2
[
Φ̄,

(
g(κ)V

)+]
,

s(c)H̄ = [Φ, χ̄ ], δ(c)H̄ = 2
[
η,

(
g(κ)V

)+]
− 2

[
Φ̄,

(
g(κ)Ψ̄

)+]
(41)+Lκ χ̄ .

This corresponds to aNT = 2 theory. However, the mirror op
eratorss̄(c) and δ̄(c) have the same ghost number as the
mary ones. The internal symmetry in this case isZ2 instead of
SL(2,R) [6]. As a matter of fact, the four symmetries are n
enough to fix the action and do not give an algebra which
be closed off-shell without the introduction of an infinite set
fields.
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