4 research outputs found

    Photoreflectance and surface photovoltage spectroscopy of beryllium-doped GaAs/AlAs multiple quantum wells

    Get PDF
    We present an optical study of beryllium delta-doped GaAs/AlAs multiple quantum well (QW) structures designed for sensing terahertz (THz) radiation. Photoreflectance (PR), surface photovoltage (SPV), and wavelength-modulated differential surface photovoltage (DSPV) spectra were measured in the structures with QW widths ranging from 3 to 20 nm and doping densities from 2×10(10) to 5×10(12) cm(–2) at room temperature. The PR spectra displayed Franz-Keldysh oscillations which enabled an estimation of the electric-field strength of ~20 kV/cm at the sample surface. By analyzing the SPV spectra we have determined that a buried interface rather than the sample surface mainly governs the SPV effect. The DSPV spectra revealed sharp features associated with excitonic interband transitions which energies were found to be in a good agreement with those calculated including the nonparabolicity of the energy bands. The dependence of the exciton linewidth broadening on the well width and the quantum index has shown that an average half monolayer well width fluctuations is mostly predominant broadening mechanism for QWs thinner than 10 nm. The line broadening in lightly doped QWs, thicker than 10 nm, was found to arise from thermal broadening with the contribution from Stark broadening due to random electric fields of the ionized impurities in the structures. We finally consider the possible influence of strong internal electric fields, QW imperfections, and doping level on the operation of THz sensors fabricated using the studied structures. © 2005 American Institute of Physic

    Energy Spectrum of InAs Quantum Dots in GaAs/AlAs Superlattices

    No full text
    Photo- and contactless electroreflectance spectroscopies were applied to study optical properties and electronic structure of GaAs/AlAs superlattice systems with embedded InAs quantum dots. The observed interband transitions related to the quantum dot ground and excited states, as well as optical transitions in the combined system formed by the InAs wetting layer and GaAs/AlAs superlattice are discussed

    Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum Wells

    No full text
    We report on optical, photoreflectance and surface photovoltage, as well as terahertz photocurrent investigation of Be-doped GaAs/AlAs multiple quantum wells at room and liquid helium temperatures, respectively. From the Franz-Keldysh oscillations observed in photoreflectance spectra we determine built-in electric fields within the structure. Interband transition energies calculated by the transfer matrix method are in qualitative agreement with experimentally determined values for the samples having various, from 2×1010\text{}^{10} up to 2.5×1012\text{}^{12} cm2\text{}^{-2}, Be doping densities. The photocurrent observed in the range of 5.4-7.3 THz we associate with photoionization of Be-acceptor states

    Terahertz Detection with δ-Doped GaAs/AlAs Multiple Quantum Wells

    No full text
    The authors demonstrate selective detection of terahertz radiation employing berylliumδ-doped GaAs/AlAs multiple quantum wells. The sensitivity up to 1 V/W within 4.2-7.3 THz range at liquid helium temperatures is reached. The Franz-Keldysh oscillations observed in photo- and electroreflectance spectra allowed one to estimate built-in electric fields in the structures studied. It was found that the electric field strength in the cap layer region could vary from 10 kV/cm up to 26 kV/cm, depending on the structure design and temperature
    corecore