10,788 research outputs found

    Attractive Potential around a Thermionically Emitting Microparticle

    Full text link
    We present a simulation study of the charging of a dust grain immersed in a plasma, considering the effect of electron emission from the grain (thermionic effect). It is shown that the OML theory is no longer reliable when electron emission becomes large: screening can no longer be treated within the Debye-Huckel approach and an attractive potential well forms, leading to the possibility of attractive forces on other grains with the same polarity. We suggest to perform laboratory experiments where emitting dust grains could be used to create non-conventional dust crystals or macro-molecules.Comment: 3 figures. To appear on Physical Review Letter

    Expressing the Behavior of Three Very Different Concurrent Systems by Using Natural Extensions of Separation Logic

    Full text link
    Separation Logic is a non-classical logic used to verify pointer-intensive code. In this paper, however, we show that Separation Logic, along with its natural extensions, can also be used as a specification language for concurrent-system design. To do so, we express the behavior of three very different concurrent systems: a Subway, a Stopwatch, and a 2x2 Switch. The Subway is originally implemented in LUSTRE, the Stopwatch in Esterel, and the 2x2 Switch in Bluespec

    Generation of wakefields by whistlers in spin quantum magnetoplasmas

    Full text link
    The excitation of electrostatic wakefields in a magnetized spin quantum plasma by the classical as well as the spin-induced ponderomotive force (CPF and SPF, respectively) due to whistler waves is reported. The nonlinear dynamics of the whistlers and the wakefields is shown to be governed by a coupled set of nonlinear Schr\"{o}dinger (NLS) and driven Boussinesq-like equations. It is found that the quantum force associated with the Bohm potential introduces two characteristic length scales, which lead to the excitation of multiple wakefields in a strongly magnetized dense plasma (with a typical magnetic field strength B0≳109B_{0}\gtrsim10^{9} T and particle density n0≳1036n_{0}\gtrsim10^{36} m−3^{-3}), where the SPF strongly dominates over the CPF. In other regimes, namely B0≲108B_{0}\lesssim10^{8} T and  n0≲1035\ n_{0}\lesssim10^{35} m−3^{-3}, where the SPF is comparable to the CPF, a plasma wakefield can also be excited self-consistently with one characteristic length scale. Numerical results reveal that the wakefield amplitude is enhanced by the quantum tunneling effect, however it is lowered by the external magnetic field. Under appropriate conditions, the wakefields can maintain high coherence over multiple plasma wavelengths and thereby accelerate electrons to extremely high energies. The results could be useful for particle acceleration at short scales, i.e. at nano- and micrometer scales, in magnetized dense plasmas where the driver is the whistler wave instead of a laser or a particle beam.Comment: 8 pages, 2 figures; Revised version to appear in Physics of Plasmas (Dec. 2010 issue

    Quantum Trivelpiece-Gould waves in a magnetized dense plasma

    Full text link
    The dispersion relation for the electrostatic waves below the electron plasma frequency in a dense quantum plasma is derived by using the magnetohydrodynamic model. It is shown that in the classical case the dispersion relation reduces to the expression obtained for the well-known Trivelpiece-Gould (TG) modes. Attention is also devoted to the case of solitary waves associated with the nonlinear TG modes.Comment: 8 pages, 0 figure

    Microstructure of a liquid complex (dusty) plasma under shear

    Full text link
    The microstructure of a strongly coupled liquid undergoing a shear flow was studied experimentally. The liquid was a shear melted two-dimensional plasma crystal, i.e., a single-layer suspension of micrometer-size particles in a rf discharge plasma. Trajectories of particles were measured using video microscopy. The resulting microstructure was anisotropic, with compressional and extensional axes at around ±45∘\pm 45^{\circ} to the flow direction. Corresponding ellipticity of the pair correlation function g(r)g({\bf r}) or static structure factor S(k)S(\bf{k}) gives the (normalized) shear rate of the flow.Comment: 5 pages, 6 figure

    Optimal operating conditions and characteristics of acetone/CaF_2 detector for inverse photoemission spectroscopy

    Full text link
    Performance and characteristics of a band-pass photon detector using acetone gas and CaF_2 window (acetone/CaF_2) have been studied and compared with an ethanol/MgF_2 detector. The optimal operating conditions are found to be 4 mbar acetone pressure and 745+/-20 V anode voltage. The count rate obtained by us is about a factor of 3 higher than what has been reported earlier for the acetone detector. Unlike other gas filled detectors, this detector works in the proportional region with very small dead time (4 micro sec). A detector band-pass of 0.48+/-0.01 eV FWHM is obtained.Comment: Review of Scientific Instruments 76, 066102 (2005
    • …
    corecore