13,851 research outputs found

    Heuristic derivation of continuum kinetic equations from microscopic dynamics

    Full text link
    We present an approximate and heuristic scheme for the derivation of continuum kinetic equations from microscopic dynamics for stochastic, interacting systems. The method consists of a mean-field type, decoupled approximation of the master equation followed by the `naive' continuum limit. The Ising model and driven diffusive systems are used as illustrations. The equations derived are in agreement with other approaches, and consequences of the microscopic dependences of coarse-grained parameters compare favorably with exact or high-temperature expansions. The method is valuable when more systematic and rigorous approaches fail, and when microscopic inputs in the continuum theory are desirable.Comment: 7 pages, RevTeX, two-column, 4 PS figures include

    Effect of electron-phonon interaction on spectroscopies in graphene

    Full text link
    We calculate the effect of the electron-phonon interaction on the electronic density of states (DOS), the quasiparticle properties and on the optical conductivity of graphene. In metals with DOS constant on the scale of phonon energies, the electron-phonon renormalizations drop out of the dressed DOS, however, due to the Dirac nature of the electron dynamics in graphene, the band DOS is linear in energy and phonon structures remain, which can be emphasized by taking an energy derivative. There is a shift in the chemical potential and in the position in energy of the Dirac point. Also, the DOS can be changed from a linear dependence out of value zero at the Dirac point to quadratic out of a finite value. The optical scattering rate 1/τ1/\tau sets the energy scale for the rise of the optical conductivity from its universal DC value 4e2/πh4e^2/\pi h (expected in the simplest theory when chemical potential and temperature are both 1/2τ\ll 1/2\tau) to its universal AC background value (σ0=πe2/2h)(\sigma_0=\pi e^2/2h). As in ordinary metals the DC conductivity remains unrenormalized while its AC value is changed. The optical spectral weight under the intraband Drude is reduced by a mass renormalization factor as is the effective scattering rate. Optical weight is transferred to an Holstein phonon-assisted side band. Due to Pauli blocking the interband transitions are sharply suppressed, but also nearly constant, below twice the value of renormalized chemical potential and also exhibit a phonon-assisted contribution. The universal background conductivity is reduced below σ0\sigma_0 at large energies.Comment: 22 pages, 19 figures, submitted to PR

    Hydrologic reinforcement induced by contrasting woody species during summer and winter

    Get PDF
    Aims: Vegetation can improve slope stability by transpiration-induced suction (hydrologic reinforcement). However, hydrologic reinforcement varies with seasons, especially under temperate climates. This study aims to quantify and compare the hydrologic reinforcement provided by contrasting species during winter and summer.Methods: One deciduous (Corylus avellana) and two evergreens (Ilex aquifolium and Ulex europaeus) were planted in 1-m soil columns. Soil columns were irrigated, left for evapotranspiration and then subjected to extreme wetting events during both summer and winter. Soil water content, matric suction and strength were measured down the soil profile. Plant water status and growth (above- and below-ground) were also recorded.Results: The tested species showed differing abilities to remove water, induce suction and hence influence soil strength. During summer, only Ulex europaeus provided a soil strength gain (up to six-fold the value at saturation) along the entire depth-profile inducing high suction (e.g. 70 kPa), largely maintained after wetting events in deeper soil (0.7 m). During winter, the evergreen species could remove water but at slower rates compared to summer.Conclusions: Evergreens could slowly induce suction and hence potentially stabilise slopes during winter. However, there were large differences between the two evergreens because of different growth rate and resource use

    Multi-wavelength emissions from the millisecond pulsar binary PSR J1023+0038 during an accretion active state

    Get PDF
    Recent observations strongly suggest that the millisecond pulsar binary PSR J1023+0038 has developed an accretion disk since 2013 June. We present a multi-wavelength analysis of PSR J1023+0038, which reveals that 1) its gamma-rays suddenly brightened within a few days in June/July 2013 and has remained at a high gamma-ray state for several months; 2) both UV and X-ray fluxes have increased by roughly an order of magnitude, and 3) the spectral energy distribution has changed significantly after the gamma-ray sudden flux change. Time variabilities associated with UV and X-rays are on the order of 100-500 seconds and 50-100 seconds, respectively. Our model suggests that a newly formed accretion disk due to the sudden increase of the stellar wind could explain the changes of all these observed features. The increase of UV is emitted from the disk, and a new component in gamma-rays is produced by inverse Compton scattering between the new UV component and pulsar wind. The increase of X-rays results from the enhancement of injection pulsar wind energy into the intra-binary shock due to the increase of the stellar wind. We also predict that the radio pulses may be blocked by the evaporated winds from the disk and the pulsar is still powered by rotation.Comment: 8 pages, 3 figures; accepted for publication in Ap

    Effects of differential mobility on biased diffusion of two species

    Full text link
    Using simulations and a simple mean-field theory, we investigate jamming transitions in a two-species lattice gas under non-equilibrium steady-state conditions. The two types of particles diffuse with different mobilities on a square lattice, subject to an excluded volume constraint and biased in opposite directions. Varying filling fraction, differential mobility, and drive, we map out the phase diagram, identifying first order and continuous transitions between a free-flowing disordered and a spatially inhomogeneous jammed phase. Ordered structures are observed to drift, with a characteristic velocity, in the direction of the more mobile species.Comment: 15 pages, 4 figure

    Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes

    Get PDF
    The dynamics of relativistic stars and black holes are often studied in terms of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with different effective potentials V(x)V(x). In this paper we present a systematic study of the relation between the structure of the QNM's of the KG equation and the form of V(x)V(x). In particular, we determine the requirements on V(x)V(x) in order for the QNM's to form complete sets, and discuss in what sense they form complete sets. Among other implications, this study opens up the possibility of using QNM expansions to analyse the behavior of waves in relativistic systems, even for systems whose QNM's do {\it not} form a complete set. For such systems, we show that a complete set of QNM's can often be obtained by introducing an infinitesimal change in the effective potential

    Phase transitions in periodically driven macroscopic systems

    Full text link
    We study the large-time behavior of a class of periodically driven macroscopic systems. We find, for a certain range of the parameters of either the system or the driving fields, the time-averaged asymptotic behavior effectively is that of certain other equilibrium systems. We then illustrate with a few examples how the conventional knowledge of the equilibrium systems can be made use in choosing the driving fields to engineer new phases and to induce new phase transitions.Comment: LaTex, 8 page

    Unification of bulk and interface electroresistive switching in oxide systems

    Get PDF
    We demonstrate that the physical mechanism behind electroresistive switching in oxide Schottky systems is electroformation, as in insulating oxides. Negative resistance shown by the hysteretic current-voltage curves proves that impact ionization is at the origin of the switching. Analyses of the capacitance-voltage and conductance-voltage curves through a simple model show that an atomic rearrangement is involved in the process. Switching in these systems is a bulk effect, not strictly confined at the interface but at the charge space region.Comment: 4 pages, 3 figures, accepted in PR
    corecore