5 research outputs found

    Design and Synthesis of Biaryl DNA-Encoded Libraries

    No full text
    DNA-encoded library technology (ELT) is a powerful tool for the discovery of new small-molecule ligands to various protein targets. Here we report the design and synthesis of biaryl DNA-encoded libraries based on the scaffold of 5-formyl 3-iodobenzoic acid. Three reactions on DNA template, acylation, Suzuki–Miyaura coupling and reductive amination, were applied in the library synthesis. The three cycle library of 3.5 million diversity has delivered potent hits for phosphoinositide 3-kinase α (PI3Kα)

    Discovery of a Potent Class of PI3Kα Inhibitors with Unique Binding Mode via Encoded Library Technology (ELT)

    No full text
    In the search of PI3K p110α wild type and H1047R mutant selective small molecule leads, an encoded library technology (ELT) campaign against the desired target proteins was performed which led to the discovery of a selective chemotype for PI3K isoforms from a three-cycle DNA encoded library. An X-ray crystal structure of a representative inhibitor from this chemotype demonstrated a unique binding mode in the p110α protein

    Cell-Based Selection Expands the Utility of DNA-Encoded Small-Molecule Library Technology to Cell Surface Drug Targets: Identification of Novel Antagonists of the NK3 Tachykinin Receptor

    No full text
    DNA-encoded small-molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, this technology has been used with soluble protein targets that are produced and used in a purified state. Here, we describe a cell-based method for identifying small-molecule ligands from DNA-encoded libraries against integral membrane protein targets. We use this method to identify novel, potent, and specific inhibitors of NK3, a member of the tachykinin family of G-protein coupled receptors (GPCRs). The method is simple and broadly applicable to other GPCRs and integral membrane proteins. We have extended the application of DNA-encoded library technology to membrane-associated targets and demonstrate the feasibility of selecting DNA-tagged, small-molecule ligands from complex combinatorial libraries against targets in a heterogeneous milieu, such as the surface of a cell

    Discovery of Highly Potent and Selective Small Molecule ADAMTS‑5 Inhibitors That Inhibit Human Cartilage Degradation via Encoded Library Technology (ELT)

    No full text
    The metalloprotease ADAMTS-5 is considered a potential target for the treatment of osteoarthritis. To identify selective inhibitors of ADAMTS-5, we employed encoded library technology (ELT), which enables affinity selection of small molecule binders from complex mixtures by DNA tagging. Selection of ADAMTS-5 against a four-billion member ELT library led to a novel inhibitor scaffold not containing a classical zinc-binding functionality. One exemplar, (<i>R</i>)-<i>N</i>-((1-(4-(but-3-en-1-ylamino)-6-(((2-(thiophen-2-yl)­thiazol-4-yl)­methyl)­amino)-1,3,5-triazin-2-yl)­pyrrolidin-2-yl)­methyl)-4-propylbenzenesulfonamide (<b>8)</b>, inhibited ADAMTS-5 with IC<sub>50</sub> = 30 nM, showing >50-fold selectivity against ADAMTS-4 and >1000-fold selectivity against ADAMTS-1, ADAMTS-13, MMP-13, and TACE. Extensive SAR studies showed that potency and physicochemical properties of the scaffold could be further improved. Furthermore, in a human osteoarthritis cartilage explant study, compounds <b>8</b> and <b>15f</b> inhibited aggrecanase-mediated <sup>374</sup>ARGS neoepitope release from aggrecan and glycosaminoglycan in response to IL-1β/OSM stimulation. This study provides the first small molecule evidence for the critical role of ADAMTS-5 in human cartilage degradation

    Discovery, SAR, and X‑ray Binding Mode Study of BCATm Inhibitors from a Novel DNA-Encoded Library

    No full text
    As a potential target for obesity, human BCATm was screened against more than 14 billion DNA encoded compounds of distinct scaffolds followed by off-DNA synthesis and activity confirmation. As a consequence, several series of BCATm inhibitors were discovered. One representative compound (<i>R</i>)-3-((1-(5-bromothiophene-2-carbonyl)­pyrrolidin-3-yl)­oxy)-<i>N</i>-methyl-2′-(methylsulfonamido)-[1,1′-biphenyl]-4-carboxamide (<b>15e</b>) from a novel compound library synthesized via on-DNA Suzuki–Miyaura cross-coupling showed BCATm inhibitory activity with IC<sub>50</sub> = 2.0 μM. A protein crystal structure of <b>15e</b> revealed that it binds to BCATm within the catalytic site adjacent to the PLP cofactor. The identification of this novel inhibitor series plus the establishment of a BCATm protein structure provided a good starting point for future structure-based discovery of BCATm inhibitors
    corecore