248 research outputs found

    Human phosphodiesterase 4D7 (PDE4D7) expression is increased in TMPRSS2-ERG positive primary prostate cancer and independently adds to a reduced risk of post-surgical disease progression

    Get PDF
    background: There is an acute need to uncover biomarkers that reflect the molecular pathologies, underpinning prostate cancer progression and poor patient outcome. We have previously demonstrated that in prostate cancer cell lines PDE4D7 is downregulated in advanced cases of the disease. To investigate further the prognostic power of PDE4D7 expression during prostate cancer progression and assess how downregulation of this PDE isoform may affect disease outcome, we have examined PDE4D7 expression in physiologically relevant primary human samples. methods: About 1405 patient samples across 8 publically available qPCR, Affymetrix Exon 1.0 ST arrays and RNA sequencing data sets were screened for PDE4D7 expression. The TMPRSS2-ERG gene rearrangement status of patient samples was determined by transformation of the exon array and RNA seq expression data to robust z-scores followed by the application of a threshold >3 to define a positive TMPRSS2-ERG gene fusion event in a tumour sample. results: We demonstrate that PDE4D7 expression positively correlates with primary tumour development. We also show a positive association with the highly prostate cancer-specific gene rearrangement between TMPRSS2 and the ETS transcription factor family member ERG. In addition, we find that in primary TMPRSS2-ERG-positive tumours PDE4D7 expression is significantly positively correlated with low-grade disease and a reduced likelihood of progression after primary treatment. Conversely, PDE4D7 transcript levels become significantly decreased in castration resistant prostate cancer (CRPC). conclusions: We further characterise and add physiological relevance to PDE4D7 as a novel marker that is associated with the development and progression of prostate tumours. We propose that the assessment of PDE4D7 levels may provide a novel, independent predictor of post-surgical disease progression

    The coregulator Alien

    Get PDF
    Alien has characteristics of a corepressor for selected members of the nuclear hormone receptor (NHR) superfamily and also for transcription factors involved in cell cycle regulation and DNA repair. Alien mediates gene silencing and represses the transactivation of specific NHRs and other transcription factors to modulate hormone response and cell proliferation. Alien is a highly conserved protein and is expressed in a wide variety of tissues. Knockout of the gene encoding Alien in mice is embryonic lethal at a very early stage, indicating an important evolutionary role in multicellular organisms. From a mechanistic perspective, the corepressor function of Alien is in part mediated by histone deacetylase (HDAC) activity. In addition, Alien seems to modulate nucleosome assembly activity. This suggests that Alien is acting on chromatin not only through recruitment of histone-modifying activities, but also through enhancing nucleosome assembly

    Androgen receptor mutations

    Get PDF
    Male sexual differentiation and development proceed under direct control of androgens. Androgen action is mediated by the intracellular androgen receptor, which belongs to the superfamily of ligand-dependent transcription factors. At least three pathological situations are associated with abnormal androgen receptor structure and function: androgen insensitivity syndrome (AIS), spinal and bulbar muscular atrophy (SBMA) and prostate cancer. In the X-linked androgen insensitivity syndrome, defects in the androgen receptor gene have prevented the normal development of both internal and external male structures in 46,XY individuals. Complete or gross deletions of the androgen receptor gene have not been found frequently in persons with complete androgen insensitivity syndrome. Point mutations at several different sites in exons 2–8 encoding the DNA- and androgen-binding domain, have been reported for partial and complete forms of androgen insensitivity. A relatively high number of mutations were reported in two different clusters in exon 5 and in exon 7. The number of mutations in exon 1 is extremely low and no mutations have been reported in the hinge region, located between the DNA-binding domain and the ligand-binding domain and which is encoded by the first half of exon 4. Androgen receptor gene mutations in prostate cancer are very rare and are reported only in exons 4–8. The X-linked spinal and bulbar muscle atrophy (SBMA; Kennedy's disease) is associated with an expanded length (> 40 residues) of one of the polyglutamine stretches in the N-terminal domain of the androgen receptor

    Human phosphodiesterase 4D7 (PDE4D7) expression is increased in TMPRSS2-ERG-positive primary prostate cancer and independently adds to a reduced risk of post-surgical disease progression

    Get PDF
    Background:There is an acute need to uncover biomarkers that reflect the molecular pathologies, underpinning prostate cancer progression and poor patient outcome. We have previously demonstrated that in prostate cancer cell lines PDE4D7 is downregulated in advanced cases of the disease. To investigate further the prognostic power of PDE4D7 expression during prostate cancer progression and assess how downregulation of this PDE isoform may affect disease outcome, we have examined PDE4D7 expression in physiologically relevant primary human samples.Methods:About 1405 patient samples across 8 publically available qPCR, Affymetrix Exon 1.0 ST arrays and RNA sequencing data sets were screened for PDE4D7 expression. The TMPRSS2-ERG gene rearrangement status of patient samples was determined by transformation of the exon array and RNA seq expression data to robust z-scores followed by the application of a threshold >3 to define a positive TMPRSS2-ERG gene fusion event in a tumour sample.Results:We demonstrate that PDE4D7 expression positively correlates with primary tumour development. We also show a positive association with the highly prostate cancer-specific gene rearrangement between TMPRSS2 and the ETS transcription factor family member ERG. In addition, we find that in primary TMPRSS2-ERG-positive tumours PDE4D7 expression is significantly positively correlated with low-grade disease and a reduced likelihood of progression after primary treatment. Conversely, PDE4D7 transcript levels become significantly decreased in castration resistant prostate cancer (CRPC).Conclusions:We further characterise and add physiological relevance to PDE4D7 as a novel marker that is associated with the development and progression of prostate tumours. We propose that the assessment of PDE4D7 levels may provide a novel, independent predictor of post-surgical disease progression

    Differential tissue expression of extracellular vesicle-derived proteins in prostate cancer

    Get PDF
    Abstract Background: Proteomic profiling of extracellular vesicles (EVs) from prostate cancer (PCa) and normal prostate cell lines, led to the identification of new candidate PCa markers. These proteins included the nuclear exportin proteins XPO1 (also known as CRM1), the EV‐associated PDCD6IP (also known as ALIX), and the previously published fatty acid synthase FASN. In this study, we investigated differences in expression of XPO1 and PDCD6IP on well‐characterized prostate cancer cohorts using mass spectrometry and tissue microarray (TMA) immunohistochemistry to determine their diagnostic and prognostic value. Methods: Protein fractions from 67 tissue samples (n = 33 normal adjacent prostate [NAP] and n = 34 PCa) were analyzed by mass spectrometry (nano‐LC‐MS‐MS). Label‐free quantification of EVs was performed to identify differentially expressed proteins between PCa and NAP. Prognostic evaluation of the candidate markers was performed with a TMA, containing 481 radical prostatectomy samples. Samples were stained for the candidate markers and correlated with patient information and clinicopathological outcome. Results: XPO1 was higher expressed in PCa compared to NAP in the MS data analysis (P > 0.0001). PDCD6IP was not significantly higher expressed (P = 0.0501). High cytoplasmic XPO1 staining in the TMA immunohistochemistry, correlated in a multivariable model with high Gleason scores (P = 0.002) and PCa‐related death (P = 0.009). Conclusion: High expression of cytoplasmic XPO1 shows correlation with prostate cancer and has added clinical value in tissue samples. Furthermore, as an extracellular vesicles‐associated protein, it might be a novel relevant liquid biomarker

    Severe forms of partial androgen insensitivity syndrome due to p.L830F novel mutation in androgen receptor gene in a Brazilian family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The androgen insensitivity syndrome may cause developmental failure of normal male external genitalia in individuals with 46,XY karyotype. It results from the diminished or absent biological action of androgens, which is mediated by the androgen receptor in both embryo and secondary sex development. Mutations in the androgen receptor gene, located on the X chromosome, are responsible for the disease. Almost 70% of 46,XY affected individuals inherited mutations from their carrier mothers.</p> <p>Findings</p> <p>Molecular abnormalities in the androgen receptor gene in individuals of a Brazilian family with clinical features of severe forms of partial androgen insensitivity syndrome were evaluated. Seven members (five 46,XY females and two healthy mothers) of the family were included in the investigation. The coding exons and exon-intron junctions of androgen receptor gene were sequenced. Five 46,XY members of the family have been found to be hemizygous for the c.3015C>T nucleotide change in exon 7 of the androgen receptor gene, whereas the two 46,XX mothers were heterozygote carriers. This nucleotide substitution leads to the p.L830F mutation in the androgen receptor.</p> <p>Conclusions</p> <p>The novel p.L830F mutation is responsible for grades 5 and 6 of partial androgen insensitivity syndrome in two generations of a Brazilian family.</p

    Cancer-ID:Toward Identification of Cancer by Tumor-Derived Extracellular Vesicles in Blood

    Get PDF
    Extracellular vesicles (EVs) have great potential as biomarkers since their composition and concentration in biofluids are disease state dependent and their cargo can contain disease-related information. Large tumor-derived EVs (tdEVs, >1μm) in blood from cancer patients are associated with poor outcome, and changes in their number can be used to monitor therapy effectiveness. Whereas, small tumor-derived EVs (<1μm) are likely to outnumber their larger counterparts, thereby offering better statistical significance, identification and quantification of small tdEVs are more challenging. In the blood of cancer patients, a subpopulation of EVs originate from tumor cells, but these EVs are outnumbered by non-EV particles and EVs from other origin. In the Dutch NWO Perspectief Cancer-ID program, we developed and evaluated detection and characterization techniques to distinguish EVs from non-EV particles and other EVs. Despite low signal amplitudes, we identified characteristics of these small tdEVs that may enable the enumeration of small tdEVs and extract relevant information. The insights obtained from Cancer-ID can help to explore the full potential of tdEVs in the clinic

    Text-derived concept profiles support assessment of DNA microarray data for acute myeloid leukemia and for androgen receptor stimulation

    Get PDF
    BACKGROUND: High-throughput experiments, such as with DNA microarrays, typically result in hundreds of genes potentially relevant to the process under study, rendering the interpretation of these experiments problematic. Here, we propose and evaluate an approach to find functional associations between large numbers of genes and other biomedical concepts from free-text literature. For each gene, a profile of related concepts is constructed that summarizes the context in which the gene is mentioned in literature. We assign a weight to each concept in the profile based on a likelihood ratio measure. Gene concept profiles can then be clustered to find related genes and other concepts. RESULTS: The experimental validation was done in two steps. We first applied our method on a controlled test set. After this proved to be successful the datasets from two DNA microarray experiments were analyzed in the same way and the results were evaluated by domain experts. The first dataset was a gene-expression profile that characterizes the cancer cells of a group of acute myeloid leukemia patients. For this group of patients the biological background of the cancer cells is largely unknown. Using our methodology we found an association of these cells to monocytes, which agreed with other experimental evidence. The second data set consisted of differentially expressed genes following androgen receptor stimulation in a prostate cancer cell line. Based on the analysis we put forward a hypothesis about the biological processes induced in these studied cells: secretory lysosomes are involved in the production of prostatic fluid and their development and/or secretion are androgen-regulated processes. CONCLUSION: Our method can be used to analyze DNA microarray datasets based on information explicitly and implicitly available in the literature. We provide a publicly available tool, dubbed Anni, for this purpose
    corecore