1,780 research outputs found

    Are All Static Black Hole Solutions Spherically Symmetric?

    Full text link
    The static black hole solutions to the Einstein-Maxwell equations are all spherically symmetric, as are many of the recently discovered black hole solutions in theories of gravity coupled to other forms of matter. However, counterexamples demonstrating that static black holes need not be spherically symmetric exist in theories, such as the standard electroweak model, with electrically charged massive vector fields. In such theories, a magnetically charged Reissner-Nordstrom solution with sufficiently small horizon radius is unstable against the development of a nonzero vector field outside the horizon. General arguments show that, for generic values of the magnetic charge, this field cannot be spherically symmetric. Explicit construction of the solution shows that it in fact has no rotational symmetry at all.Comment: 6 pages, plain TeX. Submitted to GRF Essay Competitio

    Extended x-ray absorption fine structure study of porous GaSb formed by ion implantation

    Get PDF
    Porous GaSb has been formed by Ga ion implantation into crystalline GaSb substrates at either room temperature or −180 °C. The morphology has been characterized using scanning electron microscopy and the atomic structure was determined using extended x-ray absorption fine structure spectroscopy. Room-temperature implantation at low fluences leads to the formation of ∼20-nm voids though the material remains crystalline. Higher fluences cause the microstructure to evolve into a network of amorphous GaSb rods ∼15 nm in diameter. In contrast, implantation at −180 °C generates large, elongated voids but no rods. Upon exposure to air, the surface of the porous material is readily oxidized yielding Ga₂O₃ and metallic Sb precipitates, the latter resulting from the reduction of unstable Sb₂O₃. We consider and discuss the atomic-scale mechanisms potentially operative during the concurrent crystalline-to-amorphous and continuous-to-porous transformations

    Structural and elastic characterization of Cu-implanted SiO₂ films on Si(100) substrates

    Get PDF
    Cu-implanted SiO₂ films on Si(100) have been studied and compared to unimplanted SiO₂ on Si(100) using x-ray methods, transmission electron microscopy, Rutherford backscattering, and Brillouin spectroscopy. The x-ray results indicate the preferred orientation of Cu {111} planes parallel to the Si substrate surface without any directional orientation for Cu-implanted SiO₂∕Si(100) and for Cu-implanted and annealedSiO₂∕Si(100). In the latter case, transmission electron microscopy reveals the presence of spherical nanocrystallites with an average size of ∼2.5 nm. Rutherford backscattering shows that these crystallites (and the Cu in the as-implanted film) are largely confined to depths of 0.4−1.2 μm below the film surface. Brillouin spectra contain peaks due to surface, film-guided and bulk acoustic modes. Surface (longitudinal) acoustic wave velocities for the implanted films were ∼7% lower (∼2% higher) than for unimplanted SiO₂∕Si(100). Elastic constants were estimated from the acoustic wave velocities and film densities. C₁₁ (C₄₄) for the implanted films was ∼10% higher (lower) than that for the unimplanted film. The differences in acoustic velocities and elastic moduli are ascribed to implantation-induced compaction and/or the presence of Cu in the SiO₂ film.B.J. and M.C.R. are grateful for financial support from the Australian Synchrotron Research Program, funded by the Commonwealth of Australia. M.C.R. would also like to thank the Australian Research Council for their financial support. The financial support of the Natural Sciences and Engineering Research Council of Canada NSERC is gratefully acknowledged by G.T.A. and J.S

    Large amounts of optically-obscured star formation in the host galaxies of some type-2 quasars

    Get PDF
    We present Hubble Space Telescope images, and spectral energy distributions from optical to infrared wavelengths for a sample of six 0.3<z<0.8 type-2 quasars selected in the mid-infrared using data from the Spitzer Space Telescope. All the host galaxies show some signs of disturbance. Most seem to possess dusty, star-forming disks. The disk inclination, estimated from the axial ratio of the hosts, correlates with the depth of the silicate feature in the mid-infrared spectra, implying that at least some of the reddening towards the AGN arises in the host galaxy. The star formation rates in these objects, as inferred from the strengths of the PAH features and far-infrared continuum, range from 3-90 Msun/yr, but are mostly much larger than those inferred from the [OII]3727 emission line luminosity, due to obscuration. Taken together with studies of type-2 quasar hosts from samples selected in the optical and X-ray, this is consistent with previous suggestions that two types of extinction processes operate within the type-2 quasar population, namely a component due to the dusty torus in the immediate environment of the AGN, and a more extended component due to a dusty, star forming disk.Comment: 5 pages, 3 figures. Accepted by ApJ Letter

    Static Black Hole Solutions without Rotational Symmetry

    Full text link
    We construct static black hole solutions that have no rotational symmetry. These arise in theories, including the standard electroweak model, that include charged vector mesons with mass m0m\ne 0. In such theories, a magnetically charged Reissner-Nordstrom black hole with horizon radius less than a critical value of the order of m1m^{-1} is classically unstable against the development of a nonzero vector meson field just outside the horizon, indicating the existence of static black hole solutions with vector meson hair. For the case of unit magnetic charge, spherically symmetric solutions of this type have previously been studied. For other values of the magnetic charge, general arguments show that any new solution with hair cannot be spherically symmetric. In this paper we develop and apply a perturbative scheme (which may have applicability in other contexts) for constructing such solutions in the case where the Reissner-Nordstrom solution is just barely unstable. For a few low values of the magnetic charge the black holes retain a rotational symmetry about a single axis, but this axial symmetry disappears for higher charges. While the vector meson fields vanish exponentially fast at distances greater than O(m1)O(m^{-1}), the magnetic field and the metric have higher multipole components that decrease only as powers of the distance from the black hole.Comment: 42 pages, phyzzx. 4 figures (PostScript, 1.7 MB when uncompressed) available by email from the Authors on reques

    Imaging the spotty surface of Betelgeuse in the H band

    Full text link
    This paper reports on H-band interferometric observations of Betelgeuse made at the three-telescope interferometer IOTA. We image Betelgeuse and its asymmetries to understand the spatial variation of the photosphere, including its diameter, limb darkening, effective temperature, surrounding brightness, and bright (or dark) star spots. We used different theoretical simulations of the photosphere and dusty environment to model the visibility data. We made images with parametric modeling and two image reconstruction algorithms: MIRA and WISARD. We measure an average limb-darkened diameter of 44.28 +/- 0.15 mas with linear and quadratic models and a Rosseland diameter of 45.03 +/- 0.12 mas with a MARCS model. These measurements lead us to derive an updated effective temperature of 3600 +/- 66 K. We detect a fully-resolved environment to which the silicate dust shell is likely to contribute. By using two imaging reconstruction algorithms, we unveiled two bright spots on the surface of Betelgeuse. One spot has a diameter of about 11 mas and accounts for about 8.5% of the total flux. The second one is unresolved (diameter < 9 mas) with 4.5% of the total flux. Resolved images of Betelgeuse in the H band are asymmetric at the level of a few percent. The MOLsphere is not detected in this wavelength range. The amount of measured limb-darkening is in good agreement with model predictions. The two spots imaged at the surface of the star are potential signatures of convective cells.Comment: 10 pages, 10 figures, accepted for publication in A&A, references adde

    Co–Au core-shell nanocrystals formed by sequential ion implantation into SiO₂

    No full text
    Co–Au core-shell nanocrystals (NCs) were formed by sequential ion implantation of Au and Co into thin SiO₂. The NCs were investigated by means of transmission electron microscopy and extended x-ray absorption fine structure spectroscopy. The latter reveals a bond length expansion in the Co core compared to monatomic Co NCs. Concomitantly, a significant contraction of the bond length and a significant reduction of the effective Au–Au coordination number were observed in the Au shells. Increased Debye-Waller factors indicate significant strain in the NCs. These experimental results verify recent theoretical predictions.P.K. and M.C.R. thank the Australian Research Council for support. P.K., B.H., B.J., and M.C.R. were supported by the Australian Synchrotron Research Program, funded by the Commonwealth of Australia via the Major National Research Facilities Program
    corecore