19,468 research outputs found

    Axial and Vector Correlator Mixing in Hot and Dense Hadronic Matter

    Get PDF
    We study the manifestations of chiral symmetry restoration which have a significance for the parity mixing. Restricting to pions and nucleons we establish a formalism for the expression of the vector correlator, which displays the mixing of the axial correlator into the vector one and unifies the cases of the heat bath and the dense medium. We give examples of mixing cross-sections. We also establish a link between the energy integrated mixing cross-sections and the pion scalar density which governs the quenching factors of coupling constants, such as the pion decay one, as well as the quark condensate evolution.Comment: 12 pages, Latex, 4 PostScript Figure

    Electrical Characterization of a Thin Edgeless N-on-p Planar Pixel Sensors For ATLAS Upgrades

    Full text link
    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology is a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, and presenting some sensors' simulation results, a complete overview of the electrical characterization of the produced devices will be given.Comment: 9 pages, 9 figures, to appear in the proceedings of the 15th International Workshops on Radiation Imaging Detector

    Performance of Irradiated Thin Edgeless N-on-P Planar Pixel Sensors for ATLAS Upgrades

    Full text link
    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology is a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, a complete overview of the electrical characterization of several irradiated samples will be discussed. Some comments about detector modules being assembled will be made and eventually some plans will be outlined.Comment: 6 pages, 13 figures, to appear in the proceedings of the 2013 Nuclear Science Symposium and Medical Imaging Conference. arXiv admin note: text overlap with arXiv:1311.162

    Novel Silicon n-on-p Edgeless Planar Pixel Sensors for the ATLAS upgrade

    Full text link
    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-in-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the "active edge" concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.Comment: 6 pages, 5 figures, to appear in the proceedings of the 9th International Conference on Radiation Effects on Semiconductor Materials Detectors and Device

    Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades

    Get PDF
    The development of n-on-p "edgeless" planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the "active edge" technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×1015neq/cm21 \times 10^{15} {\rm n_{eq}}/{\rm cm}^2 comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb−1^{-1}) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.Comment: 20 pages, 9 figures, submitted to Nucl. Instr. and Meth.

    Scaling of variables and the relation between noncommutative parameters in Noncommutative Quantum Mechanics

    Full text link
    We consider Noncommutative Quantum Mechanics with phase space noncommutativity. In particular, we show that a scaling of variables leaves the noncommutative algebra invariant, so that only the self-consistent effective parameters of the model are physically relevant. We also discuss the recently proposed relation of direct proportionality between the noncommutative parameters, showing that it has a limited applicability.Comment: Revtex4, 4 pages; version to match the published on
    • 

    corecore