55 research outputs found

    Non-uniform Photoinduced Unfolding of Supramolecular Polymers Leading to Topological Block Nanofibers

    Get PDF
    Synthesis of one-dimensional nanofibers with distinct topological (higher-order structural) domains in the same main chain is one of the challenging topics in modern supramolecular polymer chemistry. Non-uniform structural transformation of supramolecular polymer chains by external stimuli may enable preparation of such nanofibers. To demonstrate feasibility of this post-polymerization strategy, we prepared a photoresponsive helically folded supramolecular polymers from a barbiturate monomer containing an azobenzene-embedded rigid Ļ€-conjugated scaffold. In contrast to previous helically folded supramolecular polymers composed of a more flexible azobenzene monomer, UV-light induced unfolding of the newly prepared helically folded supramolecular polymers occurred nonuniformly, affording topological block copolymers consisting of folded and unfolded domains. The formation of such blocky copolymers indicates that the photoinduced unfolding of the helically folded structures initiates from relatively flexible parts such as termini or defects. Spontaneous refolding of the unfolded domains was observed after visible-light irradiation followed by aging to restore fully folded structures

    Directed assembly of optoelectronically active alkyl-<i>Ļ€</i>-conjugated molecules by adding <i>n</i>-alkanes or <i>Ļ€</i>-conjugated species

    Get PDF
    Supramolecular assembly can yield ordered structures by taking advantage of the cumulative effect of multiple non-covalent interactions between adjacent molecules. The thermodynamic origin of many self-assembled structures in water is the balance between the hydrophilic and hydrophobic segments of the molecule. Here, we show that this approach can be generalized to use solvophobic and solvophilic segments of fully hydrophobic alkylated fullerene molecules. Addition of n-alkanes results in their assembly--due to the antipathy of C60 towards n-alkanes--into micelles and hexagonally packed gel-fibres containing insulated C60 nanowires. The addition of pristine C60 instead directs the assembly into lamellar mesophases by increasing the proportion of Ļ€-conjugated material in the mixture. The assembled structures contain a large fraction of optoelectronically active material and exhibit comparably high photoconductivities. This method is shown to be applicable to several alkyl-Ļ€-conjugated molecules, and can be used to construct organized functional materials with Ļ€-conjugated sections

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Yield performance and adaptation of some Australian and CIMMYT/ICARDA developed wheat genotypes in the West Asia North Africa (WANA) region

    No full text
    Copyright Ā© CSIRO 2001S. Sivapalan, L. O'Brien, G. Ortiz-Ferrara, G. J. Hollamby, I. Barclay and P. J. Marti
    • ā€¦
    corecore