185 research outputs found

    Cytoprotection and Preconditioning for Stem Cell Therapy

    Get PDF

    Nitrite is produced by elicited but not by circulating neutrophils

    Get PDF
    The generation of nitrite (NO2-) was used as an index of the production of nitric oxide by human and rat polymorphonuclear leukocytes (PMN) and rat peritoneal macrophages. Human peripheral blood PMN did not produce significant levels of NO2-. Attempts to induce NO2- generation in human PMN by incubation with GM–CSF (1 nM), TNFα (0.3 nM), endotoxin (1 ÎŒg/ml) or formyl-Met-Leu-Phe (100 nM) for up to 16 h were not successful. Addition of human PMN primed by GM–CSF (1 nM) to rabbit aortic ring preparations precontracted with phenylephrine had no effect on tone. In contrast to these observations, PMN, isolated from the peritoneum of oyster glycogen treated rats, generated NO2- via a pathway sensitive to inhibition by the nitric oxide synthase inhibitor, NG-monomethyl L-arginine. However, peripheral blood rat PMN obtained from the same animals did not produce NO2-, even during prolonged incubation for periods of up to 16 h. It is suggested that detectable NO production by PMN requires NO synthase activity to be induced either by the process of PMN migration or by exposure to certain cytokines produced locally at the site of inflammation

    Algorithm for identifying and separating beats from arterial pulse records

    Get PDF
    BACKGROUND: This project was designed as an epidemiological aid-selecting tool for a small country health center with the general objective of screening out possible coronary patients. Peripheral artery function can be non-invasively evaluated by impedance plethysmography. Changes in these vessels appear as good predictors of future coronary behavior. Impedance plethysmography detects volume variations after simple occlusive maneuvers that may show indicative modifications in arterial/venous responses. Averaging of a series of pulses is needed and this, in turn, requires proper determination of the beginning and end of each beat. Thus, the objective here is to describe an algorithm to identify and separate out beats from a plethysmographic record. A secondary objective was to compare the output given by human operators against the algorithm. METHODS: The identification algorithm detected the beat's onset and end on the basis of the maximum rising phase, the choice of possible ventricular systolic starting points considering cardiac frequency, and the adjustment of some tolerance values to optimize the behavior. Out of 800 patients in the study, 40 occlusive records (supradiastolic- subsystolic) were randomly selected without any preliminary diagnosis. Radial impedance plethysmographic pulse and standard ECG were recorded digitizing and storing the data. Cardiac frequency was estimated with the Power Density Function and, thereafter, the signal was derived twice, followed by binarization of the first derivative and rectification of the second derivative. The product of the two latter results led to a weighing signal from which the cycles' onsets and ends were established. Weighed and frequency filters are needed along with the pre-establishment of their respective tolerances. Out of the 40 records, 30 seconds strands were randomly chosen to be analyzed by the algorithm and by two operators. Sensitivity and accuracy were calculated by means of the true/false and positive/negative criteria. Synchronization ability was measured through the coefficient of variation and the median value of correlation for each patient. These parameters were assessed by means of Friedman's ANOVA and Kendall Concordance test. RESULTS: Sensitivity was 97% and 91% for the two operators, respectively, while accuracy was cero for both of them. The synchronism variability analysis was significant (p < 0.01) for the two statistics, showing that the algorithm produced the best result. CONCLUSION: The proposed algorithm showed good performance as expressed by its high sensitivity. The correlation analysis demonstrated that, from the synchronism point of view, the algorithm performed the best detection. Patients with marked arrhythmic processes are not good candidates for this kind of analysis. At most, they would be singled out by the algorithm and, thereafter, to be checked by an operator

    Influence of Shear-Thinning Rheology on the Mixing Dynamics in Taylor-Couette Flow

    Get PDF
    Non‐Newtonian rheology can have a significant effect on mixing efficiency, which remains poorly understood. The effect of shear‐thinning rheology in a Taylor‐Couette reactor is studied using a combination of particle image velocimetry and flow visualization. Shear‐thinning is found to alter the critical Reynolds numbers for the formation of Taylor vortices and the higher‐order wavy instability, and is associated with an increase in the axial wavelength. Strong shear‐thinning and weak viscoelasticity can also lead to sudden transitions in wavelength as the Reynolds number is varied. Finally, it is shown that shear‐thinning causes an increase in the mixing time within vortices, due to a reduction in their circulation, but enhances the axial dispersion of fluid in the reactor
    • 

    corecore