1,514 research outputs found

    Invisible Axions and Large-Radius Compactifications

    Get PDF
    We study some of the novel effects that arise when the QCD axion is placed in the ``bulk'' of large extra spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be adjusted independently of its couplings to ordinary matter, thereby providing a new method of rendering the axion invisible. Second, we discuss the new phenomenon of laboratory axion oscillations (analogous to neutrino oscillations), and show that these oscillations cause laboratory axions to ``decohere'' extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contributing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we show that under certain circumstances, the presence of an infinite tower of Kaluza-Klein axion modes can significantly accelerate the dissipation of the energy associated with cosmological relic axion oscillations, thereby enabling the Peccei-Quinn symmetry-breaking scale to exceed the usual four-dimensional relic oscillation bounds. Together, these ideas therefore provide new ways of obtaining an ``invisible'' axion within the context of higher-dimensional theories with large-radius compactifications.Comment: 43 pages, LaTeX, 6 figure

    Are There Oscillations in the Baryon/Meson Ratio?

    Full text link
    All available data indicate a surplus of baryon states over meson states for energies greater than about 1.5 GeV. Since hadron-scale string theory suggests that their numbers should become equal with increasing energy, it has recently been proposed that there must exist exotic mesons with masses just above 1.7 GeV in order to fill the deficit. We demonstrate that a string-like picture is actually consistent with the present numbers of baryon and meson states, and in fact predicts regular oscillations in their ratio. This suggests a different role for new hadronic states.Comment: 14 pages (RevTeX), McGill/92-0

    Ultraviolet dependence of Kaluza-Klein effects on electroweak observables

    Get PDF
    In extensions of the standard model (SM) with d extra dimensions at the TeV scale the virtual exchange of Kaluza-Klein (KK) excitations of the gauge bosons gives contributions that change the SM relations between electroweak observables. These corrections are finite only for d=1; for d\ge 2 the infinite tower of KK modes gives a divergent contribution that has to be regularized introducing a cutoff (the string scale). However, the ultraviolet dependence of the KK effects is completely different if the running of the couplings with the scale is taken into account. We find that for larger d the number of excitations at each KK level increases, but their larger number is compensated by the smaller value of the gauge coupling at that scale. As a result, for any number of extra dimensions the exchange of the complete KK tower always gives a finite contribution. We show that (i) for d=1 the running of the gauge coupling decreases an 14% the effect of the KK modes on electroweak observables; (ii) in all cases more than 90% of the total effect comes from the excitations in the seven lowest KK levels and is then independent of ultraviolet physics.Comment: 8 pages, to appear in Phys. Rev.

    Fermion masses and quantum numbers from extra dimensions

    Full text link
    We study the localization of fermions on a brane embedded in a space-time with AdSn×MkAdS_n \times M^k geometry. Quantum numbers of localized fermions are associated with their rotation momenta around the brane. Fermions with different quantum numbers have different higher-dimensional profiles. Fermion masses and mixings, which are proportional to the overlap of higher-dimensional profiles of the fermions, depend on the fermion quantum numbers.Comment: 14 page

    Phenomenology of Noncommutative Field Theories

    Full text link
    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model.Comment: 7 pages RevTeX, 4 eps figures, Invited plenary talk, IX Mexican Workshop on Particles and Fields, November 17-22, 2003, Universidad de Colima, Mexic

    Relaxing Cosmological Constraints on Large Extra Dimensions

    Full text link
    We reconsider cosmological constraints on extra dimension theories from the excess production of Kaluza-Klein gravitons. We point out that, if the normalcy temperature is above 1 GeV, then graviton states produced at this temperature will decay early enough that they do not affect the present day dark matter density, or the diffuse gamma ray background. We rederive the relevant cosmological constraints for this scenario.Comment: 17 pages, latex, revtex4; added a short discussion of other constraints, reference

    Central Charge Reduction and Spacetime Statistics in the Fractional Superstring

    Get PDF
    Fractional superstrings in the tensor-product formulation experience ``internal projections'' which reduce their effective central charges. Simple expressions for the characters of the resulting effective worldsheet theory are found. All states in the effective theory can be consistently assigned definite spacetime statistics. The projection to the effective theory is shown to be described by the action of a dimension-three current in the original tensor-product theory.Comment: 11 pages (LaTeX), CLNS 92/1168, McGill/92-41 (minor typos corrected

    Homogeneity, Flatness and "Large" Extra Dimensions

    Get PDF
    We consider a model in which the universe is the direct product of a (3+1)-dimensional Friedmann, Robertson-Walker (FRW) space and a compact hyperbolic manifold (CHM). Standard Model fields are confined to a point in the CHM (i.e. to a brane). In such a space, the decay of massive Kaluza-Klein modes leads to the injection of any initial bulk entropy into the observable (FRW) universe. Both Kolmogoro-Sinai mixing due to the non-integrability of flows on CHMs and the large statistical averaging inherent in the collapse of the initial entropy onto the brane smooth out any initial inhomogeneities in the distribution of matter and of 3-curvature on any slice of constant 3-position. If, as we assume, the initial densities and curvatures in each fundamental correlation volume are drawn from some universal underlying distributions independent of location within the space, then these smoothing mechanisms effectively reduce the density and curvature inhomogeneities projected onto the FRW. This smoothing is sufficient to account for the current homogeneity and flatness of the universe. The fundamental scale of physics can be \gsim 1TeV. All relevant mass and length scales can have natural values in fundamental units. All large dimensionless numbers, such as the entropy of the universe, are understood as consequences of the topology of spacetime which is not explained. No model for the origin of structure is proffered.Comment: minor changes, matches version published in Phys. Rev. Let

    THE EFFECT OF REACTOR IRRADIATION UPON HYDROGEN ADSORPTION BY AN ALUMINA CATALYST

    Full text link

    Compact Hyperbolic Extra Dimensions: Branes, Kaluza-Klein Modes and Cosmology

    Get PDF
    We reconsider theories with low gravitational (or string) scale M_* where Newton's constant is generated via new large-volume spatial dimensions, while Standard Model states are localized to a 3-brane. Utilizing compact hyperbolic manifolds (CHM's) we show that the spectrum of Kaluza-Klein (KK) modes is radically altered. This allows an early universe cosmology with normal evolution up to substantial temperatures, and completely negates the constraints on M_* arising from astrophysics. Furthermore, an exponential hierarchy between the usual Planck scale and the true fundamental scale of physics can emerge with only order unity coefficients. The linear size of the internal space remains small. The proposal has striking testable signatures.Comment: 4 pages, no figure
    corecore